The Science Archives:Sandbox

From the Science Archives, the open-project database of science information
(Redirected from TSA:SHIT)
Jump to navigation Jump to search
Welcome to the Sandbox!
RULES:
  1. Every user has their own portion of the sandbox. To start your own portion, write a header with your username only (without the User: prefix) and edit in that area. Do not edit other people's portions.
  2. Do not import content from the sandbox to the main namespace site.
  3. No profane content (except shit or shitposting).
  4. Do not remove or edit this header. Anyone who does so will receive a four day block.
Edit below this line:

Joey717[edit]

Let's imagine that a Kuiper Belt object 400 kilometers in diameter headed straight for Earth at a speed of 72,000 kilometers per hour (20 kilometers per second).

Click here for video

Before the collision[edit]

Fragments of the giant impactor start raining down on Earth. It is by then that humanity discovers the impact and starts to prepare for the disaster. No human, however, is expected to survive. Looking at the sky, the impactor looks slow, despite it travelling at 20 km/s, because of its size. The destination of the impactor would be the Atlantic Ocean a few kilometers off the coast of Florida.

During the collision[edit]

The impactor hits the surface of the Earth at such a tremendous speed that it begins to peel the crust of the surface, similar to an orange skin. The crust is then shredded into debris that is then thrown into space. Florida and the Bahamas are obliterated instantly. Cuba, Hispaniola, the rest of the Caribbean, the Yutacan Peninsula, and most of the Southern United States are peeled off and shredded.

The shockwave created by the impact crates a tsunami that travels at hypersonic speeds, submerging the city of New York and the European coastline underwater. The tsunami can even reach central Asia.

But the crater doesn't stop growing. The cities of Washington D.C. , Baltimore, and New York are swallowed by the crater and crushed into rubble. Debris that was once most of the North American continent are thrown into space (the look would be similar to a pan on the surface of the Earth with magma in the middle), only for them to rain down on the surface of the Earth. Not all of North America was destroyed. California, Oregon, Washington, western Canada, and Alaska have survived. However, their major cities like San Diego, Los Angeles, San Francisco, Vancouver, Winnipeg, and Anchorage are being bombarded by debris raining from space. The crater has a diameter of at least 4,000 kilometers and has swallowed everything from north of Montreal to the border between Venezuela and Brazil.

After the collision[edit]

The crust has been peeled off the surface of the Earth and has collected in a pan shape. In that pan shape, though, comes out real destruction. A fair fraction of humans still remain on Earth, but humanity will be finished by what happens next. The crust and mantle of the Earth begin to melt, but not just that, also begin to collect in the crater. The mantle and crust then collect in a dome shape and start to spread all over the Earth in all directions. The melted crust covers the Alps, causing mountains like Matterhorn and Mont Blanc to melt into magma. The firestorm reaches the Tibetan Plateau, causing giant tsunamis that can submerge cities. 14 hours after impact, the firestorm reaches Southeast Asia, the opposite side of the world to the impact point. Australia would be the last country to be scorched by the firestorm. Almost any living thing that touches the firestorm (except humans) will be vaporized instantly. In a day, the firestorm has entirely covered the Earth, the Earth's surface would have melted and sterilized, and Humanity would be going extinct with humans burning in fire. In a month, no living thing would remain on the Earth. The entire planet would look like a burning ember from space, with a bright spot on it. That bright spot is the crater, and once, on that same area, lay 3/5ths of the once mighty North American continent.

Stop icon Whatever you do, do not vandalize my user page and/or common.css. I am highly against vandalism. BTW, I am not an admin. Thank you. --Joey P. - THE OFFICIAL (talk) 06:24, 1 September 2017 (UTC)
Stop icon However, I am giving everyone the right to edit this page freely! Yes, you can edit it and add more information on! But just like I said above, please no vandalism. --Joey P. - THE OFFICIAL (talk) 06:24, 1 September 2017 (UTC)

List of largest stars and planet orbits[edit]

Below is a list of the largest stars (and planet orbits for comparison) so far discovered, ordered by radius. The unit of measurement used is the radius of the Sun (R☉ = 696,392 km). Planet orbits are also included, in colored cells.

Caveats:

The exact order of this list is not complete, nor is it perfectly defined:

  • There are sometimes high uncertainties in derived values and sizes;
  • The distances to most of these stars are uncertain to differing degrees and this uncertainty affects the size measurements;
  • All the stars in this list have extended atmospheres, many are embedded in mostly opaque dust shells or disks, and most pulsate, such that their radii are not well defined;
  • There are theoretical reasons for expecting that no stars in the Milky Way are larger than approximately 2,544 times the Sun, based on evolutionary models and the Hayashi instability zone. The exact limit depends on the metallicity of the star, so for example supergiants in the Magellanic Clouds have slightly different limiting temperature and luminosity. Stars exceeding the limit have been seen to undergo large eruptions and to change their spectral type over just a few months;
  • A survey of the Magellanic Clouds has catalogued most of the red supergiants and 50 of them are larger than the 700 R (490,000,000 km; 3.3 AU; 300,000,000 mi) cutoff point of this table, with the largest at 1,200–1,300.[1]
  • Another survey on the star cluster Westerlund 1 revealed that there are several red supergiant stars that have a large physical extent of more than 2,000 D, with only one of them, Westerlund 1-26, in this list.[2]
  • Some of the stars are sorted with the lowest given estimate, so the true size may be larger.

Read this first.[edit]

R136a1 is not 1,300 D, it is only 32.1 D.

VY Canis Majoris is not the largest at 1,800 - 2,200 D, it is only 1,420 D.

WOH G64 não é o maior estrela no 2,000 D, é apenas 1,540 D e UY Scuti (1,708 D) é o estrela maior.

L1551 IRS 5 は10,000以上の最大値ではなく、わずか0,212 Dです。 10,000 Dは原始星雲の大きさである。

And also Shadron Soul and VY Masses Majoris don't exist.


List of the largest stars in the universe
Name Solar diameter
(Sun = 1)
Notes
{| class="article-table" These guys wanted to see Butters Stotch on our scientific catalog, but both of them got what they both deserve. No Butters love here! *guys = all blocked users
Progenitor of ASASSN-15lh 70,000[3] Something tells me that there was an error when it came to calculating its size.
Quasi-star (hypothetical) 7,187 A hypothetical type of star that could exist in the universe, and whose hypernovae could be the cause for quasars, galaxies, and supermassive black holes. Quasi-stars are predicted to have surface temperatures limited to about 4,000 K (3,730 °C), but, with diameters of approximately 10 billion kilometres (66.85 au) or 7,187 times that of the Sun, each one would produce as much light as a small galaxy.[4]
Orbit of Pluto 3,500 For comparison.
Orbit of Neptune 3,400 For comparison.
VY Canis Majoris (-2007 size) 3,000+[5]
Orbit of Uranus 2,800 For comparison.
VY Canis Majoris (2007 - 2012 size) (1,800 -) 2,200[5]
Red Supergiants of Westerlund 1 2,000+ (undefined)[2]
WOH G64 (-2012 size) 2,000[6]
VV Cephei A (2007 - 2012 size) (1,600 -) 1,900[7]
Orbit of Saturn 1,800 For comparison.
UY Scuti 1,708 ± 192[8] Currently the largest star in the Milky Way and in the universe. Margin of error in size determination: ± 192 solar radii. At the largest, it would be 1,900 D, but at the smallest, it would have a radius of 1,516 D similar to that of VX Sagittarii (see below)
NML Cygni 1,650

(1,183[9]-2,775[10])

NML Cyg is a semiregular variable star surrounded by a circumstellar nebula and is heavily obscured by dust extinction.
WOH G64 1,540[11] This would be the largest star in the Large Magellanic Cloud, but is unusual in position and motion and might still be a foreground halo giant. Margin of possible error: ± 77 solar radii (Levesque 2009). Once thought to be a star 2,000 D in radius[6]
Westerlund 1-26 1,530[12] - 2,544Template:Vs[13][14][15] Very uncertain parameters for an unusual star with strong radio emission. The spectrum is variable but apparently the luminosity is not. The radius of Westerlund 1-26 is not well known, with some even claiming it to be as large as 2,544 D.Template:Vs[2][16]
VX Sagittarii 1,520[17] (1,350-1,940[18]) VX Sgr is a pulsating variable with a large visual range and varies significantly in size. The real range is actually between 1,350-1,940 D.[18]
KY Cygni 1,420 – 2,850 [19] The upper estimate is due to an unusual K band measurement and thought to be an artifact of a reddening correction error. The lower estimate is consistent with other stars in the same survey and with theoretical models.
VY Canis Majoris 1,420 Humphreys et al originally estimated the radius of VY CMa to be 1,800 - 2,200 solar radii; a size so large that places it outside the bounds of stellar evolutionary theory. The quoted size is based on an improved measurement by Wittowski et al. Another study by Massey, Levesque, and Plez concludes that the star has a radius around 600 solar radii.[20]
AH Scorpii 1,411 ± 124[8]
VV Cephei A (1,050 – 1,900[19]) Probably the largest star visible to the naked eye. VV Cephei A is a highly distorted star in a binary system, losing mass to its B-type companion VV Cephei B for at least part of its orbit. The radius determined from its orbit and eclipses are not necessarily consistent with those determined from temperature and luminosity. Analysis of its orbit places an upper limit on the size at 1,900 solar radii.[19] However, it cannot be reached because the Roche lobe of VV Cephei A is estimated to be 1,800 solar radii, so the radius can be no larger than this. Older estimates have given much larger sizes.[22]
Eta Carinae (at the height of the great eruption) ~1,400[23]
HR 5171 A 1,315[24] ± 260 - 1,490 ± 540[25] Also known as V766 Cen A. HR 5171 is a highly distorted star in a close binary system, losing mass to the secondary. According to Chesneau et al; it may be the largest star of its type (yellow hypergiant), but may be of early K-type class or even a red supergiant.
SMC 18136 1,310 This would be the largest star in the Small Magellanic Cloud.
72 Leonis 1,300[citation needed]
Mu Cephei (Herschel's "Garnet Star") 1,260

(650[26]-1,420[19])

RW Cephei 1,260 - 1,610[citation needed] RW Cep is variable both in brightness (by at least a factor of 3) and spectral type (observed from G8 to M), thus probably also in diameter. Because the spectral type and temperature at maximum luminosity are not known, the quoted sizes are just estimates.
XX Persei 1,247.5[citation needed] Located near the border with Andromeda.
BI Cygni (916[17]-) 1,240[19] Possibly the second largest known yellow hypergiant.[citation needed]
S Persei 1,230[19] In the Perseus Double Cluster
RAFGL 2139 1,200[citation needed] RAFGL 2139 is a red supergiant companion to WR 114. A rare red supergiant that has a bow shock.
PZ Cassiopeiae 1,190-1,940[19] or 1,260-1,340[27] The upper estimate is due to an unusual K band measurement and thought to be an artifact of a reddening correction error. The lower estimate is consistent with other stars in the same survey and with theoretical models. In another opinion, the star has a radius of 1,260 - 1,340 D[27]
DU Crucis 1,180[citation needed] The red supergiant component of the Jewel Box Cluster.
BC Cygni 1,140[19]
RT Carinae 1,090[19]
V396 Centauri 1,070[19]
Orbit of Jupiter 1,064 - 1,173 For comparison.
CK Carinae 1,060[19]
HV 11423 1,060–1,220[28] HV 11423 is variable in spectral type (observed from K0/1 I to M4.5/5 I), thus probably also in diameter. In October 1978, he appeared as a star of M0I type.
U Lacertae 1,025[17]
KW Sagittarii 1,009[8] - 1,460[19]
NR Vulpeculae 980[19]
GCIRS 7 960 ± 92[29]
S Cassiopeiae 930[30][31]
IX Carinae 920[19]
HV 2112 918[32] The most likely candidate of a Thorne-Zytkow object (a red supergiant with a neutron star as a core)
OH 104.9+2.4 891[9]
Betelgeuse (Alpha Orionis) 887 ± 203[33] – 1,180[34] Also known as Alpha Orionis. 9th brightest star in the Night Sky.
OH 26.5+0.6 874[9]
V602 Carinae 860[19]-1,050[35]
V669 Cassiopeiae 859[9]
AFGL 5379 830[9]
LP Andromedae 815[9]
BO Carinae 790[19]
SU Persei 780[19] In the Perseus Double Cluster
RS Persei 770[36]-1,000[19] In the Perseus Double Cluster. Margin of possible error: ± 30 solar radii (Baron 2014).
AV Persei 770[19]
HD 95687 760[19]
V915 Scorpii 760[37]
S Cephei 760[38]
HD 303250 750[19]
V382 Carinae 747 ± 250 or 600 - 1,100[39] The brightest yellow hypergiant in the night sky, one of the rarest types of star.
RU Virginis 742[38]
XX Persei 710[40] In the Perseus Double Cluster
V648 Cassiopeiae 710[19]
V528 Carinae 700[19]
TV Geminorum (BU Geminorum) 620-710[41] (-770[19]) One of the largest stars visible to the naked eye.
The following well-known stars are listed for the purpose of comparison.
V354 Cephei 690[17] - 1,520[19] Also known as Case 75.
RW Cygni 680 - 980[19] An alternate calculation gives a higher temperature of 3,920 K and a correspondingly radius of 680 D.
Antares A (Alpha Scorpii A) 680[42]–883[43] or 653 - 1,246[foot 1] 15th brightest star in the Night Sky.
Psi1 Aurigae 637[citation needed]
V1749 Cygni 620 - 1,040[19]
CE Tauri ("Ruby Star")[44] 608 - 800[45]
LL Pegasi 608[46]
HR 5171 Ab 590[citation needed]
S Pegasi 574[47]
T Cephei (329 -)[48] 540[49]
S Orionis 530[50]
W Hydrae 520[51]
Orbit of 4 Vesta 509 For comparison.
IK Tauri (NML Tauri) 3.53×1013 cm (507 R)[52]
R Cassiopeiae 500[53]
R Leporis 500
HR Carinae B 500[54]
R Andromedae 485 ± 125
HR 5171 B 473[citation needed]
R Hydrae 460
Orbit of 1 Ceres 452 For comparison.
Rho Cassiopeiae 450
Theta Muscae Ac 422 [citation needed] The given size is calculated from distance and luminosity. The second brightest Wolf Rayet star in the night sky. It is both the lightest and heaviest star in the system.
V810 Centauri 420[55]
Sigma Canis Majoris 420[19] The indigenous Boorong people of northwestern Victoria saw it as Unurgunite, flanked by his wives (Epsilon and Delta Canis Majoris).[56]
Mira A (Omicron Ceti) 332 - 402[57] Prototype Mira variable.
Tail of Comet Hyakutake ~400 For comparison. The longest comet tail observed.
Eta Carinae (Tseen She) 400[58] (60 - 800[59], 85 - 195[60]) Previously thought to be the most massive single star, but in 2005 it was realized to be a binary system. Its size is poorly defined.
V509 Cassiopeiae 400[61]–900[62]
V838 Monocerotis 380[63]-1,570 ± 400 [64] The very large cool "L supergiant" reported with this radius was a transient object that shrunk about four-fold over a few years. 380 solar radii as of 2009.[65]
S Doradus 100 – 380[66] Prototype S Doradus variable/Luminous Blue Variable, even though P Cygni was the first discovered
U Orionis 370 ± 96
R Doradus 370 ± 50
IRC+10420 357[67]-1,342[9]
R Sculptoris 355[25]
HR Carinae (100 -)[68] 350[69]
R Leonis 350[70]
Nu Aquilae (Equator Star) 350
V337 Carinae 350
The Pistol Star 346[71] Blue hypergiant, currently among the most massive and luminous stars.
S Coronae Borealis 340
V381 Cephei 327
Chi Cygni 316[72]
TX Piscium 310
La Superba (Y Canum Venaticorum) 300[citation needed] Referred to as La Superba by Angelo Secchi. The given size is calculated from the distance and angular diameter.
IRAS 17163-3907 (the Fried egg nebula) 300-400
V355 Cepheus 300[17]-770[19]
Orbit of Mars 297 - 358 For comparison.
Pi Puppis 290
Alpha Herculis (Ras Algethi) 264 - 303
The Sun's red giant phase 256 - 436[73][74]
Reported for reference
The Sun will reach its red giant phase in 5.8 billion years, being large enough to engulf the orbit of Mars (if the upper estiamte is true). The Sun will then reach its white dwarf phase in approximately 7 billion years.
CW Leonis 250 - 500[75] CW Leonis has been one of the mistaken identities as the claimed planet "Nibiru", due to its brightness as it approaches 1st magnitude. The pulsating red giant once was surrounded by billions of comets. Due to its expansion these now melt to water, which we can measure quite good from earth. The star's temperature is yet just 2300 kelvin. It will die in maybe 10 000 - 30 000 years and then be a planetary nebula and a white dwarf. The spectral class C refers to its extremely high content of carbon. Otherwise it would be an M star.
Cygnus OB2-12 246
Delta Canis Majoris (Wezen) 237 ± 66[76]
Omicron1 Canis Majoris 231
Deneb (Alpha Cygni) 220 Also known as Alpha Cygni. 18th brightest star in the Night Sky.
Orbit of Earth 211 - 219 For comparison.
LBV 1806-20 >200[77] Formerly a candidate for the most luminous star in the Milky Way.
HD 130114 200
Delta2 Lyrae 200
Lambda Velorum (Al Suhail) 200
HD 50064 200
RS Puppis 200
AS 314 (V452 Scuti) 200
Epsilon Pegasi (Enif) 185[78]
L Carinae 179[79]
6 Cassiopeiae 170
Rho Persei (Gorgonea Tertia) 164
Zeta Aurigae (Haedus/Sadatoni) 160[80]–200[81]
Orbit of Venus 154-157 For comparison.
Gamma Cygni (Sadr) 150[82]
Epsilon Aurigae A (Almaaz) 143 - 358[83] Epsilon Aurigae was incorrectly hailed as the largest star before 1970 with a radius of 2,700 - 3,000 D, even though the abnormally large size was due to a dusk torus surrounding the system.
Epsilon Geminorum (Mebsuta) 140
Mu Boötis (Alkalurops) 130
66 Andromedae 130
QS Aquilae 130
NO Aurigae 130
56 Aquilae 130
L Puppis 126
Iota Scorpii (Apollyon) 125
Delta Apodis 125
HIP 110307 124.1
32 G. Hydrae 121.7
Xi Puppis (Asmidiske) 120
Mu Sagittarii (Polis) 115
Omicron Cygni 115
Zeta Cephei 110
Gamma Aquilae (Tarazed) 110
34 Boötis 110
Beta Arae 110
Beta Cygni A1 (Albireo) 109[84] Also known as Beta Cygni. A well-known binary star.
Alpha Trianguli Australis (Atria) 109
Peony Nebula Star 100[85] Candidate for the most luminous star in the milky way.
Orbit of Mercury 66 - 100 For comparison.
Beta Pegasi (Scheat) 95
17 Camelopardalis 91.3
Orbit of Kepler-22b (KOI-087.01) 91.1 For comparison.
Mu Geminorum (Tejat (Posterior)) 90
Beta Andromedae (Mirach) 90
R Scuti 87.4
Gamma Crucis (Gacrux) 84[86]–113[87] The closest red giant to the sun.
Nu Cephei 83.5
Gamma Andromedae (Almach) 80[88]
Theta Herculis (Rukbalgethi Genubi) 80
Var 83 80[89] The brightest star in the Triangulum Galaxy.
Rigel (Beta Orionis) 78[90]–115[91] Also known as Beta Orionis. 7th brightest star in the Night Sky.
Alpha Leporis (Arneb) 77
P Cygni (Revenant of the Swan) 77 Earliest known candidate of a luminous blue variable.
Beta Doradus 76
DL Crucis 75-80
Upsilon Aurigae 73
Pi Herculis 72
Canopus (Alpha Carinae) 71[92] Also known as Alpha Carinae. 2nd brightest star in the Night Sky.
13 Boötis 71
Epsilon Carinae (Avior) 70–153[citation needed]
62 Sagittarii 70
R Coronae Borealis 65
Delta Virginis (Auva) 65
Delta Sagittarii (Kaus Media) 62
Delta Orionis A (Mintaka) 60 The third star in Orion's belt
Alpha Persei (Mirfak) 60
Zeta Geminorum (Mekbuda) 60
Eta Aquilae (Bezek) 60
89 Herculis 60
Upsilon Sagittarii 60
Alpha Aquarii (Sadalmelik) 60
CPD -572874 60
Chi Orionis 59
Alpha Persei (Mirfak) 56
Iota Aurigae (Al Kab) 55
FF Aquilae 55
Alpha Apodis 55
Tau Serpentis 54
Beta Cancri (Tarf) 53
Alpha Antliae 53
Zeta¹ Scorpii 52
Alphard (Alpha Hydrae) 50.5
Gamma Draconis (Eltanin) 50
Beta Aquarii (Sadalsuud) 50
HD 5980 A 48 - 160
Epsilon Boötis (Izar) 48 Thought to be the origin of the Black Knight satellite
Zeta² Scorpii 48
AG Antliae 47
V428 Andromedae 46.3
HD 13189 46
HD 203857 46
Aldebaran (Alpha Tauri) 43[93]
Epsilon Orionis (Alnilam) 42[94] The second star in Orion's belt
Alpha Cassiopeiae (Schedar) 42
Alpha Ceti (Menkar) 42
Delta Cephei (Alrediph) 41.6
Beta Ursae Minoris (Kochab) 41
Beta Draconis (Rastaban) 40
BD Camelopardalis 40
HD 5980 B 40
Eta Canis Majoris (Aludra) 37.8
Polaris (Alpha Ursae Minoris) 37.5[95] The current north pole star.
87 Leonis 37
Gamma Centauri (Muhlifan) 36.5
S Normae 35.6
Sher 25 35
R136a1 32.1 Also on record as the most massive and luminous star known.
Gamma Leonis (Algieba) 31.9
Alpha Camelopardalis 31.2
Alpha Ursae Majoris (Dubhe) 30[96]
11 Lacertae 30
Beta Camelopardalis 30
Cygnus OB2-8 28
WR 102ea 27
Tau Geminorum 27
Eta Leonis (Al Jabhah) 27
R Apodis 26.3
Eta Piscium (Kullat Nunu) 26
Melnick 42 26
Arcturus (Alpha Boötis) 25.7 Also known as Alpha Bootes. 3rd brightest star in the Night Sky and the brightest in the Northern Hemisphere.
HD 93129A 25
11 Ursae Minoris 24.1
HD 47536 23.5
R136a2 23.4[97]
Epsilon Leonis (Algenubi) 23
42 Draconis 22 ± 1
Alpha Reticuli 21
Chi Virginis 20.9
Melnick 34 20[97] The hottest star in the universe.
19 Cephei 20–30
HDE226868 20-22 The blue supergiant companion of Cygnus X-1.
Zeta Orionis (Alnitak) 20 [98] The first star in Orion's belt
Theta Scorpii (Sargas) 20
Beta Herculis (Kornephoros) 20
Theta Apodis 20
Alpha Sagittae (Alsahm) 20
Stars of Westerlund 2 ~20
Zeta Puppis (Naos) 14 - 26[99]
HR 2422 Monocerotis (Plaskett's Star) 19.2
Kappa Cassiopeiae 19
Beta Scorpii (Acrab) 19
Beta Lyrae (Sheliak) 19
R136a3 19[97]
R 122 18.5
HD 93250 18
Alpha Microscopii 17.5
Upsilon Hydrae 17.1
Beta Ceti (Deneb Kaitos) 17
Gamma Velorum (Regor) 17[100] The brightest and closest wolf-rayet in the night sky.
Epsilon Canis Majoris (Adhara) 17
LY Aurigae 16
Theta Centauri (Menkent) 16
Beta Corvi (Kraz) 16[101]
Nu Ophiuchi (Sinistra) 15.25
Alpha Arietis (Hamal) 15
Gamma Cassiopeiae (Tsih) 14
Beta Ophiuchi (Celbalrai) 13.2
37 Aquilae 13
HD 240210 13
Xi Aquilae 12
Gamma Arae 12
Xi Draconis (Grumium) 12
Alpha Eridani (Achernar) 11.4 Also known as Alpha Eridani. 10th brightest star in the Night Sky.
LH45-425 A 11.4[102]
Gamma Sagittarii (Alnasl) 11
Alpha Aurigae A (Capella A) 10.8[103] Also known as Alpha Aurigae. 10th brightest star in the Night Sky.
The Sun's helium burning phase 10 After the red-giant branch the Sun has approximately 120 million years of active life left, but much happens. First, the core, full of degenerate helium ignites violently in the helium flash, where it is estimated that 6% of the core, itself 40% of the Sun's mass, will be converted into carbon within a matter of minutes through the triple-alpha process.[104] The Sun then shrinks to around 10 times its current size and 50 times the luminosity, with a temperature a little lower than today. It will then have reached the red clump or horizontal branch, but a star of the Sun's mass does not evolve blueward along the horizontal branch. Instead, it just becomes moderately larger and more luminous over about 100 million years as it continues to burn helium in the core.
VV Cephei B 10 The B-type main sequence star companion of VV Cephei A, the largest naked-eye star.
WR 104 10 In 389,400 years, this Wolf-Rayet star is expected to explode in a supernova. It has been suggested that it may produce a gamma ray burst that could pose a threat to life on Earth should its poles be aligned 12° or lower towards Earth. This will probably cause the Holocene exinction event. The star's axis of rotation has yet to be determined with certainty.
Eta Orionis 10
UV Canis Majoris B 10
Orbit of HD 209458 b (Osiris)[105] 9.7 For comparison.
Alpha Aurigae B (Capella B) 9.2 The companion of Capella A can sometimes be seen with the naked eye.
Alpha Crucis (Acrux) 9 The brightest star in the Crux constellation.
Mimosa 8.4[106]
Alcyone 8.2
46 Leonis Minoris (Praecipua) 8.2 [107]
LH45-425 B 8.1 [102]
Pollux 8
Alpha Virginis (Spica) 7.4[108] 14th brightest star in the Night Sky and the brightest in the constellation Virgo. Its name is Latin for ear of grain.
Alnitak Ab 7.3[98]
Seginus 7
Sun (for comparison) 1 The largest body in the solar system. In approximately 5.8 billion years, the Sun would reach the red giant phase of its life (see above)

Timeline of largest star recordholders[edit]

Template:Disputed-section

Star Size (D) Current given radius

(D)

Date Notes
UY Scuti 1,708 ± 192[8] 2014—...... Margin of error in size determination: ± 192 solar radii. With its smallest value, its size would be smaller than the upper estimate of V354 Cephei (1,520) with 1,516 solar radii. With its larger value, its size would be similar to VV Cephei A's old size with 1,900 solar radii.
Westerlund 1-26 1,951—2,544[109][110][111] 1,530

(-2,544)

2013—2014 Very uncertain parameters for an unusual star with strong radio emission. The spectrum is variable but apparently the luminosity is not.
NML Cygni 1,650[112], 1,642–2,775[10] 1,183

(-2,775)

2012—2013
VY Canis Majoris 1,800—2,200

(possibly 3,000)

1,420 + 120 2007—2012 Previously thought to be a star so large that it contradicted stellar evolutionary theory, a newly improved measurement has brought it down to size.
VV Cephei A 1,600[113]—1,900[114] [foot 2] 1,050 - 1,800 1998—2007 VV Cep A is a highly distorted star in a binary system, losing mass to its B-type companion VV Cephei B for at least part of its orbit.
Betelgeuse[115] ~1,180[34][33] 887 + 203

(-1,180)

2001
Mu Cephei 1,420 1,260 1970—1998
Epsilon Aurigae A & B 2,700-3,000 143 - 358 ........—1970 For instance, apparently Epsilon Aurigae was hailed as the largest known star, incorrectly attributed to being a star, in 1970.
Largest known yellow stars:
HR 5171[116] 1,315 + 260,[24] 1,490 + 540[25] 2014—...... The star's real status is disputed. The upper estimate given by Wittowski et al gives a cool temperature, giving it the classification of a red supergiant.
V382 Carinae[117] 747 ........—2014

Relations between solar radius and orbital radius of planets[edit]

List of orbital radius of planets
Planet Astronomical unit
(AU = 149,597,870.691 km)
(AU = 214.9 solar radii)
Solar radii
(Sun = 696,392 km)
(Sun = 1)
Example stars
HD 209458 b (Osiris) 0.045 9.7 Acrux (9) VV Cephei B (10) Capella A (11.98)
Mercury 0.31 - 0.47 66 - 100 Canopus (71) Rigel (78.9) Beta Cygni (109)
Kepler-22b (KOI-087.01) 0.849 91.1 Gacrux (83) Beta Cygni (109)
Venus 0.72 - 0.73 154 - 157 Epsilon Aurigae (143 - 358) Epsilon Pegasi (185)
Earth 0.98 - 1.02 211 - 219 LBV 1806-20 (>200) Deneb (220) CW Leonis (250) Alpha Herculis (264–303)
Mars 1.38 - 1.67 297 - 358 La Superba (300) Chi Cygni (316) Pistol Star (347) V838 Monocerotis (380)
1 Ceres 1.92 452 Mira (332-402) Eta Carinae (400) Rho Cassiopeiae (450)
4 Vesta 3.79 509 W Hydrae (520) S Pegasi (580) V1749 Cygni (620-1,040) TZ Cassiopeiae (645) TV Geminorum (620-770) RW Cygni (680-980) V382 Carinae (747) S Persei (780-1,230)
Jupiter 4.95 - 5.46 949 - 1,152 Antares (800) KW Sagittarii (1,009-1,460) Betelgeuse (1,180) Mu Cephei (1,260) HR 5171 (1,315) VV Cephei (1,050 - 1,900) VY Canis Majoris (1,420) KY Cygni (1,420) WOH G64 (1,540) V838 Monocerotis (upper estimate) (1,570) NML Cygni (1,183 - 2,775)
Saturn 9.02 - 10.08 1,800 UY Scuti (1,516 - 1,900) VY Canis Majoris (2007-2012) (2,252)
Uranus 18.33 - 20.11 2,800 Westerlund 1-26 (upper estimate) (2,544)
Neptune 29.81 - 30.33 4,950
Pluto 29.658 - 49.305 5,880
Haumea ~37.393 7,782 Quasi-star (7,187)
Planet Nine 200 - 1,200 10,347 - 38,297 L1551 IRS 5's dust cloud (10,600Template:Vs[118])

List of smallest stars[edit]

This is a list of small stars that are otherwise notable for characteristics that are not separately listed.

Star name Star mean radius, km Star class Notes References
PSR B1257+12 (Lich) 12 neutron star A well-known pulsar [119]
XTE J1650-500 B 24 black hole This binary X-ray transient system, XTE J1650-500, component black hole, at 3.8 solar masses, is smaller than the previous recordholder GRO J1655-40 B of 6.3 MSun in the microquasar system GRO J1655-40. [120]
A.C.+70°8247 3300 white dwarf Smallest white dwarf star known [121]
Sirius B 5466 white dwarf Historically first detected white dwarf star [122]
Albireo B (Beta Cygni B) 6000Template:Verification needed white dwarf [123]
Procyon B 6700 white dwarf [11][124]
Van Maanen 2 9048 white dwarf [125]
EBLM J0555-57Ab 59000 red dwarf This red dwarf is slightly larger than the planet Saturn. As of 2017, it is the smallest hydrogen-fusing star known, marginally heavier than the hydrogen burning mass limit separating stellar objects and the sub-stellar brown dwarfs. Although its mass is comparable to that of TRAPPIST-1A, its radius is 1/3 smaller. [126][127][128]
2MASS J0523-1403 60000 red dwarf This red dwarf was considered, as in 2013, to be the smallest star known, and representative of the smallest star possible, which is not a brown dwarf or a dead star. [129][130]
SSSPM J0829-1309 61300 red dwarf [130]
TRAPPIST-1 79400 red dwarf Hosts a planetary system with at least seven rocky planets [131]
OGLE-TR-122B 81100 red dwarf This was once the smallest known actively fusing star, when found in 2005, through 2013. It is the smallest eclipsing red dwarf, and smallest observationally measured diameter. [132][133][134]
Proxima Centauri 101000 red dwarf This is the nearest neighbouring star to the Sun. [135]
Wolf 359 111400 red dwarf [136]
Ross 248 111400 red dwarf [137]
Barnard's Star 136000 red dwarf [135]
CM Draconis B 167000 red dwarf [138]
CM Draconis A 176000 red dwarf [138]
Kapteyn's Star 202500 red dwarf This is the closest halo star to the Sun. [135]

Footnotes[edit]

  1. approximately 800, derived from the 1990 lunar occultation measurement of apparent diameter of 43.1 milliarcsec (up to ±1 milliarcsec error) (http://adsabs.harvard.edu/abs/1990A&A...230..355R page 361) together with 1997 parallax of 5.40 [1.68] milliarcsec (SIMBAD citing Hipparcos). The parallax gives a derived distance from 460 to 877 light years. This in turn yields an actual diameter from 653 to 1,246 solar radius. An average of 800 is used here.
  2. Size, mass and luminosity estimates of the VV Cephei system are all considerably uncertain due to insufficient knowledge: Professor Kaler writes "in truth we really do not know". Its distance cannot be measured from parallax, instead it is derived from its assumed membership in the Cepheus OB2 association, but this is also not certain. Other methods give a range of sizes between 1,000 and 2,200 that of the Sun, but these too are confounded by the fact that the star is not spherical, which leads to overestimates. (J. Kaler)


Add your comment
The Science Archives welcomes all comments. If you do not want to be anonymous, register or log in. It is free.


As a reminder, article comments are only for discussions on how to improve the article. Please direct other comments to a user's talk page. Please be formal and do not use excessive uppercase. Please be advised you may receive an automatic block if you break the article comments policy. For information regarding what is acceptable/not acceptable in article comments, please message Icons-flag-ru.png Joey (talk), Natalia (talk), Icons-flag-fr.png ynoss (talk), or Icons-flag-ca.png Daniel (older account/talk).


List of largest exoplanets[edit]

Below is a list of the largest exoplanets so far discovered, in terms of physical size, ordered by radius. The sizes are listed in units of Jupiter radii (RJ, R). All planets listed are larger than the largest planet in the Solar System, Jupiter.

Exoplanet Radius (RJ)
(Jupiter = 1)
Notes
CT Cha b 2.2[139] 11-23 MJ.
HD 39091 b 2.1759[140]
SIMP J2154–1055 2.15
KOI-368.01 2.1[141]
XO-6b 2.07[142] 1.9 (± 0.5) MJ; a very puffy Hot Jupiter
HAT-P-32b 2.037[142] 0.941 (± 0.166) MJ; a very puffy Hot Jupiter
KOI-3681.01 2.0+0.7
−1
[141]
Orbits fairly close to its 1.1+0.2
−0.2
M star, with 217 day-long years.
The following well-known exoplanets are listed for the purpose of comparison.
Exoplanet Radius (RJ)
(Jupiter = 1)
Notes
WASP-17b 1.991+0.08
−0.58
[note 1][142][143]
Was the largest known planet in 2012. At only 0.486 MJ, this Hot Jupiter is extremely low density.
KOI-680 b 1.99+0.18
−0.18
[141]
CVSO 30b 1.91+0.21
−0.21
[142]
51 Pegasi b 1.9[142]
HAT-P-65b 1.89[142]
HATS-23b 1.86[142]
KELT-8b 1.86[142]
WASP-76b 1.83[144]
HAT-P-33b 1.827[142]
WASP-121b 1.81[144]
TrES-4 1.799[145]
KELT-12b 1.79[141]
HATS-26b 1.75[142]
WASP-12b 1.736[144]
HAT-P-46b 1.73[142]
WASP-94 Ab 1.72[144]
KELT-4Ab 1.706[141]
WASP-79b 1.7[142]
WASP-78b 1.7[144]
1RXS 1609b 1.7[142]
WASP-88b 1.7[144]
Kepler-12b 1.695[142]
Kepler-447b 1.65
beta Pic b 1.65
OGLE2-TR-L9b 1.614[141]
PSO J318.5-22 1.53
WASP-103b 1.528
Kepler-13b 1.51[141]
HAT-P-8b 1.5
WASP-71b 1.5
Kepler-854b 1.5
WASP-33b 1.497
Kepler-7b 1.478
Kepler-5b 1.431
Kepler-8b 1.419
TrES-3 1.341
XO-4b 1.34
TrES-2b 1.272
OGLE-TR-10b 1.26
Kepler-39b 1.22 One of the most massive exoplanets known.
Kepler-418b 1.2
Kappa And b 1.2
OGLE-TR-182b 1.13
Jupiter 69,911  km [146] Largest planet in the Solar System, by radius and mass.[147]
Reported for reference

Timeline of largest exoplanet recordholders[edit]

Planet Size (RJ) Date Notes
CT Cha b 2.037 2013- Some planets, like HD 100546 b, might be larger, but their status as a brown dwarf is unconfirmed. There should be no planet with a diameter of 720,000 km or more.
WASP-17b 1.991 2012—2013
WASP-12b 2.15 to 1.83 2009—2012
TRES-4b 1.799 2007—2009 This planet has a density of 0.2 g/cm3, about that of balsa wood, less than Jupiter's 1.3g/cm3 It was succeeded by WASP-17b as the largest exoplanet.[148][149]
HD 209458 b 1.35 —2007 This was the first exoplanet whose size was determined.[150]

References and footnotes[edit]

  1. Levesque, E. M.; Massey, P.; Olsen, K. A. G.; Plez, B.; Meynet, G.; Maeder, A. (2006). "The Effective Temperatures and Physical Properties of Magellanic Cloud Red Supergiants: The Effects of Metallicity". The Astrophysical Journal 645 (2): 1102. arXiv:astro-ph/0603596. Bibcode 2006ApJ...645.1102L. doi:10.1086/504417.
  2. 2.0 2.1 2.2 Clark, J. S.; Ritchie, B. W.; Negueruela, I.; Crowther, P. A.; Damineli, A.; Jablonski, F. J.; Langer, N. (2011). "A VLT/FLAMES survey for massive binaries in Westerlund 1. III. The WC9d binary W239 and implications for massive stellar evolution". Astronomy & Astrophysics 531: A28. arXiv:1105.0776. Bibcode 2011A&A...531A..28C. doi:10.1051/0004-6361/201116990. Cite error: Invalid <ref> tag; name "clark" defined multiple times with different content
  3. Dong, S.; Shappee, B. J.; Prieto, J. L.; Jha, S. W.; Stanek, K. Z.; Holoien, T. W.- S.; Kochanek, C. S.; Thompson, T. A. et al. (January 15, 2016). "ASASSN-15lh: A highly super-luminous supernova". Science 351 (6270): 257–260. arXiv:1507.03010. Bibcode 2016Sci...351..257D. doi:10.1126/science.aac9613. PMID 26816375.
  4. https://www.newscientist.com/article/dn12982-biggest-black-holes-may-grow-inside-quasistars/#.Ut1FCftwHs0
  5. 5.0 5.1 Humphreys, Roberta M. (2006). VY Canis Majoris: The Astrophysical Basis of Its Luminosity. pp. arXiv:astro–ph/0610433. arXiv:astro-ph/0610433. Bibcode 2006astro.ph.10433H.
  6. 6.0 6.1 Monnier, J. D; Millan-Gabet, R; Tuthill, P. G; Traub, W. A; Carleton, N. P; Coudé Du Foresto, V; Danchi, W. C; Lacasse, M. G et al. (2004). "High-Resolution Imaging of Dust Shells by Using Keck Aperture Masking and the IOTA Interferometer". The Astrophysical Journal 605: 436. arXiv:astro-ph/0401363. Bibcode 2004ApJ...605..436M. doi:10.1086/382218.
  7. Moellenhoff, C.; Schaifers, K. (1981). "Spectroscopic observations of VV Cep. II - the egress phase of the 1976/78 eclipse". Astronomy and Astrophysics 94: 333. Bibcode 1981A&A....94..333M.
  8. 8.0 8.1 8.2 8.3 Arroyo-Torres, B.; Wittkowski, M.; Marcaide, J. M.; Hauschildt, P. H. (2013). "The atmospheric structure and fundamental parameters of the red supergiants AH Scorpii, UY Scuti, and KW Sagittarii". Astronomy & Astrophysics 554: A76. arXiv:1305.6179. Bibcode 2013A&A...554A..76A. doi:10.1051/0004-6361/201220920.
  9. 9.0 9.1 9.2 9.3 9.4 9.5 9.6 De Beck, E.; Decin, L.; De Koter, A.; Justtanont, K.; Verhoelst, T.; Kemper, F.; Menten, K. M. (2010). "Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles. II. CO line survey of evolved stars: Derivation of mass-loss rate formulae". Astronomy and Astrophysics 523: A18. arXiv:1008.1083. Bibcode 2010A&A...523A..18D. doi:10.1051/0004-6361/200913771.
  10. 10.0 10.1 Zhang, B.; Reid, M. J.; Menten, K. M.; Zheng, X. W.; Brunthaler, A. (2012). "The distance and size of the red hypergiant NML Cygni from VLBA and VLA astrometry". Astronomy & Astrophysics 544: A42. arXiv:1207.1850. Bibcode 2012A&A...544A..42Z. doi:10.1051/0004-6361/201219587.
  11. 11.0 11.1 Emily M. Levesque, Philip Massey, Bertrand Plez, and Knut A. G. Olsen (June 2009). "The Physical Properties of the Red Supergiant WOH G64: The Largest Star Known?". Astronomical Journal 137 (6): 4744. arXiv:0903.2260. Bibcode 2009AJ....137.4744L. doi:10.1088/0004-6256/137/6/4744. Cite error: Invalid <ref> tag; name "Levesque2009" defined multiple times with different content
  12. Wright, N. J.; Wesson, R.; Drew, J. E.; Barentsen, G.; Barlow, M. J.; Walsh, J. R.; Zijlstra, A.; Drake, J. J. et al. (16 October 2013). "The ionized nebula surrounding the red supergiant W26 in Westerlund 1". Monthly Notices of the Royal Astronomical Society: Letters 437 (1): L1–L5. arXiv:1309.4086. Bibcode 2014MNRAS.437L...1W. doi:10.1093/mnrasl/slt127.
  13. Clark, J. S.; Ritchie, B. W.; Negueruela, I.; Crowther, P. A.; Damineli, A.; Jablonski, F. J.; Langer, N. (2011). "A VLT/FLAMES survey for massive binaries in Westerlund 1". Astronomy & Astrophysics 531: A28. Bibcode 2011A&A...531A..28C. doi:10.1051/0004-6361/201116990.
  14. Fok; Jun-ichi Nakashima; Yung; Chih-Hao Hsia; Shuji Deguchi (2012). "Maser Observations of Westerlund 1 and Comprehensive Considerations on Maser Properties of Red Supergiants Associated with Massive Clusters". The Astrophysical Journal 760: 65. arXiv:1209.6427v1. doi:10.1088/0004-637X/760/1/65.
  15. Clark, J. S.; Ritchie, B. W.; Negueruela, I. (2010). "A serendipitous survey for variability amongst the massive stellar population of Westerlund 1". Astronomy and Astrophysics 514: A87. Bibcode 2010A&A...514A..87C. doi:10.1051/0004-6361/200913820.
  16. Clark, J. S.; Ritchie, B. W.; Negueruela, I. (2010). "A serendipitous survey for variability amongst the massive stellar population of Westerlund 1". Astronomy and Astrophysics 514: A87. doi:10.1051/0004-6361/200913820.
  17. 17.0 17.1 17.2 17.3 17.4 Nicolas Mauron; Eric Josselin (2010). "The mass-loss rates of red supergiants and the de Jager prescription". Astronomy & Astrophysics 526: A156. arXiv:1010.5369. doi:10.1051/0004-6361/201013993.
  18. 18.0 18.1 Lockwood, G.W.; Wing, R. F. (1982). "The light and spectrum variations of VX Sagittarii, an extremely cool supergiant". Monthly Notices of the Royal Astronomical Society 198 (2): 385–404. Bibcode 1982MNRAS.198..385L. doi:10.1093/mnras/198.2.385.
  19. 19.00 19.01 19.02 19.03 19.04 19.05 19.06 19.07 19.08 19.09 19.10 19.11 19.12 19.13 19.14 19.15 19.16 19.17 19.18 19.19 19.20 19.21 19.22 19.23 19.24 19.25 19.26 19.27 19.28 Table 4 in Emily M. Levesque, Philip Massey, K. A. G. Olsen, Bertrand Plez, Eric Josselin, Andre Maeder, and Georges Meynet (August 2005). "The Effective Temperature Scale of Galactic Red Supergiants: Cool, but Not As Cool As We Thought". The Astrophysical Journal 628 (2): 973–985. arXiv:astro-ph/0504337. Bibcode 2005ApJ...628..973L. doi:10.1086/430901.
  20. Y. K. Choi; Hirota; Honma; Kobayashi; Bushimata; Imai; Iwadate; Jike et al. (2008). "Distance to VY VMa with VERA". Publications of the Astronomical Society of Japan (Publications Astronomical Society of Japan) 60 (5): 1007. arXiv:0808.0641. Bibcode 2008PASJ...60.1007C. doi:10.1093/pasj/60.5.1007.
  21. Ridpath & Tirion 2001, pp. 112–113.
  22. Wright, K. O. (1977). "The system of VV Cephei derived from an analysis of the H-alpha line". Journal of the Royal Astronomical Society of Canada 71: 152. Bibcode 1977JRASC..71..152W.
  23. Smith, Nathan (2011). "Explosions triggered by violent binary-star collisions: Application to Eta Carinae and other eruptive transients". Monthly Notices of the Royal Astronomical Society 415 (3): 2020. arXiv:1010.3770. Bibcode 2011MNRAS.415.2020S. doi:10.1111/j.1365-2966.2011.18607.x.
  24. 24.0 24.1 Chesneau, O.; Meilland, A.; Chapellier, E.; Millour, F.; Van Genderen, A. M.; Nazé, Y.; Smith, N.; Spang, A. et al. (2014). "The yellow hypergiant HR 5171 A: Resolving a massive interacting binary in the common envelope phase". Astronomy & Astrophysics 563: A71. arXiv:1401.2628v2. Bibcode 2014A&A...563A..71C. doi:10.1051/0004-6361/201322421. Cite error: Invalid <ref> tag; name "chesneau" defined multiple times with different content
  25. 25.0 25.1 25.2 Wittkowski, M.; Arroyo-Torres, B.; Marcaide, J. M.; Abellan, F. J.; Chiavassa, A.; Guirado, J. C. (2017). "VLTI/AMBER spectro-interferometry of the late-type supergiants V766 Cen (=HR 5171 A), σ Oph, BM Sco, and HD 206859". Astronomy & Astrophysics 597: A9. arXiv:1610.01927. Bibcode 2017A&A...597A...9W. doi:10.1051/0004-6361/201629349. Cite error: Invalid <ref> tag; name "wittkowski" defined multiple times with different content Cite error: Invalid <ref> tag; name "wittkowski" defined multiple times with different content
  26. Tsuji, Takashi (2000). "Water in Emission in the Infrared Space Observatory Spectrum of the Early M Supergiant Star μ Cephei". The Astrophysical Journal Letters 540 (2): 99–102. arXiv:astro-ph/0008058. Bibcode 2000ApJ...540L..99T. doi:10.1086/312879.
  27. 27.0 27.1 Kusuno, K.; Asaki, Y.; Imai, H.; Oyama, T. (2013). "Distance and Proper Motion Measurement of the Red Supergiant, Pz Cas, in Very Long Baseline Interferometry H2O Maser Astrometry". The Astrophysical Journal 774 (2): 107. arXiv:1308.3580. Bibcode 2013ApJ...774..107K. doi:10.1088/0004-637X/774/2/107.
  28. Massey, Philip; Levesque, Emily M.; Olsen, K. A. G.; Plez, Bertrand; Skiff, B. A. (2007). "HV 11423: The Coolest Supergiant in the SMC". The Astrophysical Journal 660: 301. arXiv:astro-ph/0701769. Bibcode 2007ApJ...660..301M. doi:10.1086/513182.
  29. Paumard, T.; Pfuhl, O.; Martins, F.; Kervella, P.; Ott, T.; Pott, J.-U.; Le Bouquin, J. B.; Breitfelder, J. et al. (2014). "GCIRS 7, a pulsating M1 supergiant at the Galactic centre. Physical properties and age". Astronomy & Astrophysics 568 (85): A85. arXiv:1406.5320. Bibcode 2014A&A...568A..85P. doi:10.1051/0004-6361/201423991.
  30. Ramstedt, S.; Schöier, F. L.; Olofsson, H. (2009). "Circumstellar molecular line emission from S-type AGB stars: mass-loss rates and SiO abundances". Astronomy and Astrophysics 499 (2): 515–527. arXiv:0903.1672. Bibcode 2009A&A...499..515R. doi:10.1051/0004-6361/200911730.
  31. Ramstedt, S.; Schöier, F. L.; Olofsson, H.; Lundgren, A. A. (2006). "Mass-loss properties of S-stars on the AGB". Astronomy and Astrophysics 454 (2): L103. arXiv:astro-ph/0605664. Bibcode 2006A&A...454L.103R. doi:10.1051/0004-6361:20065285.
  32. Levesque, Emily M.; Massey, P.; Zytkow, A. N.; Morrell, N. (1 September 2014). "Discovery of a Thorne-̇Żytkow object candidate in the Small Magellanic Cloud". Monthly Notices of the Royal Astronomical Society: Letters 443: L94. arXiv:1406.0001. Bibcode 2014MNRAS.443L..94L. doi:10.1093/mnrasl/slu080.
  33. 33.0 33.1 Dolan, Michelle M.; Mathews, Grant J.; Lam, Doan Duc; Lan, Nguyen Quynh; Herczeg, Gregory J.; Dearborn, David S. P. (2016). "Evolutionary Tracks for Betelgeuse". The Astrophysical Journal 819: 7. arXiv:1406.3143v2. Bibcode 2016ApJ...819....7D. doi:10.3847/0004-637X/819/1/7.
  34. 34.0 34.1 Smith, Nathan; Hinkle, Kenneth H.; Ryde, Nils (March 2009). "Red Supergiants as Potential Type IIn Supernova Progenitors: Spatially Resolved 4.6 μm CO Emission Around VY CMa and Betelgeuse". The Astronomical Journal 137 (3): 3558–3573. arXiv:0811.3037. Bibcode 2009AJ....137.3558S. doi:10.1088/0004-6256/137/3/3558. Cite error: Invalid <ref> tag; name "SMITH2009" defined multiple times with different content
  35. Arroyo-Torres, B.; Wittkowski, M.; Chiavassa, A.; Scholz, M.; Freytag, B.; Marcaide, J. M.; Hauschildt, P. H.; Wood, P. R. et al. (2015). "What causes the large extensions of red supergiant atmospheres?. Comparisons of interferometric observations with 1D hydrostatic, 3D convection, and 1D pulsating model atmospheres". Astronomy & Astrophysics 575: A50. arXiv:1501.01560. Bibcode 2015A&A...575A..50A. doi:10.1051/0004-6361/201425212.
  36. Baron, F.; Monnier, J. D.; Kiss, L. L.; Neilson, H. R.; Zhao, M.; Anderson, M.; Aarnio, A.; Pedretti, E. et al. (2014). "CHARA/MIRC Observations of Two M Supergiants in Perseus OB1: Temperature, Bayesian Modeling, and Compressed Sensing Imaging". The Astrophysical Journal 785: 46. arXiv:1405.4032. Bibcode 2014ApJ...785...46B. doi:10.1088/0004-637X/785/1/46.
  37. Stickland, D. J. (1985). "IRAS observations of the cool galactic hypergiants". The Observatory 105: 229. Bibcode 1985Obs...105..229S.
  38. 38.0 38.1 Bergeat, J.; Chevallier, L. (2005). "The mass loss of C-rich giants". Astronomy and Astrophysics 429: 235. arXiv:astro-ph/0601366. Bibcode 2005A&A...429..235B. doi:10.1051/0004-6361:20041280. pp. 235-246.
  39. Achmad, L. (1992). "A photometric study of the G0-4 Ia(+) hypergiant HD 96918 (V382 Carinae)". Astronomy and Astrophysics 259: 600–606. Bibcode 1992A&A...259..600A.
  40. Fok, Thomas K. T.; Nakashima, Jun-Ichi; Yung, Bosco H. K.; Hsia, Chih-Hao; Deguchi, Shuji (2012). "Maser Observations of Westerlund 1 and Comprehensive Considerations on Maser Properties of Red Supergiants Associated with Massive Clusters". The Astrophysical Journal 760: 65. arXiv:1209.6427. Bibcode 2012ApJ...760...65F. doi:10.1088/0004-637X/760/1/65.
  41. Wasatonic, Richard P.; Guinan, Edward F.; Durbin, Allyn J. (2015). "V-Band, Near-IR, and TiO Photometry of the Semi-Regular Red Supergiant TV Geminorum: Long-Term Quasi-Periodic Changes in Temperature, Radius, and Luminosity". Publications of the Astronomical Society of Pacific 127 (956): 1010. Bibcode 2015PASP..127.1010W. doi:10.1086/683261.
  42. Ohnaka, K; Hofmann, K.-H; Schertl, D; Weigelt, G; Baffa, C; Chelli, A; Petrov, R; Robbe-Dubois, S (2013). "High spectral resolution imaging of the dynamical atmosphere of the red supergiant Antares in the CO first overtone lines with VLTI/AMBER". Astronomy & Astrophysics 555: A24. arXiv:1304.4800. Bibcode 2013A&A...555A..24O. doi:10.1051/0004-6361/201321063.
  43. Baade, R.; Reimers, D. (October 2007). "Multi-component absorption lines in the HST spectra of α Scorpii B". Astronomy and Astrophysics 474 (1): 229–237. Bibcode 2007A&A...474..229B. doi:10.1051/0004-6361:20077308.
  44. "Big and Giant Stars"
  45. Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  46. Lombaert, R.; De Vries, B. L.; De Koter, A.; Decin, L.; Min, M.; Smolders, K.; Mutschke, H.; Waters, L. B. F. M. (2012). "Observational evidence for composite grains in an AGB outflow. MgS in the extreme carbon star LL Pegasi". Astronomy & Astrophysics 544: L18. arXiv:1207.1606. Bibcode 2012A&A...544L..18L. doi:10.1051/0004-6361/201219782.
  47. Van Belle, G. T.; Thompson, R. R.; Creech-Eakman, M. J. (2002). "Angular Size Measurements of Mira Variable Stars at 2.2 Microns. II". The Astronomical Journal 124 (3): 1706. arXiv:astro-ph/0210167. Bibcode 2002AJ....124.1706V. doi:10.1086/342282.
  48. Weigelt, Gerd; Beckmann, Udo; Berger, Jean-Philippe; Bloecker, Thomas; Brewer, Michael K.; Hofmann, Karl-Heinz; Lacasse, Marc G.; Malanushenko, Victor et al. (2003). "JHK-band spectro-interferometry of T Cep with the IOTA interferometer". SPIE. Interferometry for Optical Astronomy II 4838: 181–184. Bibcode 2003SPIE.4838..181W. doi:10.1117/12.458659.
  49. Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  50. Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  51. Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  52. Decin, L.; De Beck, E.; Brünken, S.; Müller, H. S. P.; Menten, K. M.; Kim, H.; Willacy, K.; de Koter, A. et al. (30 June 2010). "Circumstellar molecular composition of the oxygen-rich AGB star IK Tauri". Astronomy and Astrophysics 516: A69. doi:10.1051/0004-6361/201014136.
  53. Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  54. Boffin, Henri M. J.; Rivinius, Thomas; Merand, Antoine; Mehner, Andrea; Lebouquin, Jean-Baptiste; Pourbaix, Dimitri; De Wit, Willem-Jan; Martayan, Christophe et al. (2016). "The LBV HR Car has a partner: Discovery of a companion with the VLTI". Astronomy & Astrophysics 593: A90. arXiv:1607.07724. Bibcode 2016A&A...593A..90B. doi:10.1051/0004-6361/201629127.
  55. https://jumk.de/astronomie/big-stars/v810-centauri.shtml
  56. Hamacher, Duane W.; Frew, David J. (2010). "An Aboriginal Australian Record of the Great Eruption of Eta Carinae". Journal of Astronomical History & Heritage 13 (3): 220–34. arXiv:1010.4610. Bibcode 2010JAHH...13..220H. http://arxiv.org/ftp/arxiv/papers/1010/1010.4610.pdf.
  57. Woodruff, H. C.; Eberhardt, M.; Driebe, T.; Hofmann, K.-H. et al. (2004). "Interferometric observations of the Mira star o Ceti with the VLTI/VINCI instrument in the near-infrared". Astronomy & Astrophysics 421 (2): 703–714. arXiv:astro-ph/0404248. Bibcode 2004A&A...421..703W. doi:10.1051/0004-6361:20035826.
  58. https://jumk.de/astronomie/big-stars/eta-carinae.shtml
  59. Gull, T. R.; Damineli, A. (2010). "JD13 – Eta Carinae in the Context of the Most Massive Stars". Proceedings of the International Astronomical Union 5: 373. arXiv:0910.3158. Bibcode 2010HiA....15..373G. doi:10.1017/S1743921310009890.
  60. Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  61. Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  62. Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  63. Tylenda, R.; Kamiński, T.; Schmidt, M.; Kurtev, R.; Tomov, T. (2011). "High-resolution optical spectroscopy of V838 Monocerotis in 2009". Astronomy & Astrophysics 532: A138. Bibcode 2011A&A...532A.138T. doi:10.1051/0004-6361/201116858.
  64. B. F. Lane, A. Retter, R. R. Thompson, J. A. Eisner (April 2005). "Interferometric Observations of V838 Monocerotis". The Astrophysical Journal Letters 622 (2): L137–L140. arXiv:astro-ph/0502293. Bibcode 2005ApJ...622L.137L. doi:10.1086/429619.
  65. Tylenda, R.; Kamiński, T.; Schmidt, M.; Kurtev, R.; Tomov, T. (2011). "High-resolution optical spectroscopy of V838 Monocerotis in 2009". Astronomy & Astrophysics 532: A138. Bibcode 2011A&A...532A.138T. doi:10.1051/0004-6361/201116858.
  66. Lamers, H. J. G. L. M. (February 6–10, 1995). "Observations and Interpretation of Luminous Blue Variables". ASP Conference Series 83: 176–191. Bibcode 1995ASPC...83..176L.
  67. Dinh-V.-Trung; Muller, Sébastien; Lim, Jeremy; Kwok, Sun; Muthu, C. (2009). "Probing the Mass-Loss History of the Yellow Hypergiant IRC+10420". The Astrophysical Journal 697: 409. arXiv:0903.3714v1. Bibcode 2009ApJ...697..409D. doi:10.1088/0004-637X/697/1/409.
  68. Hutsemekers, D; van Drom, E. (1991). "HR Carinae - A luminous blue variable surrounded by an arc-shaped nebula". Astronomy and Astrophysics 281: 141–149. Bibcode 1991A&A...248..141H.
  69. Machado, M. A. D.; de Araújo, F. X.; Pereira, C. B.; Fernandes, M. B. (2002). "HR Carinae: New spectroscopic data and physical parameters". Astronomy and Astrophysics (Astronomy and Astrophysics) 387: 151–161. Bibcode 2002A&A...387..151M. doi:10.1051/0004-6361:20020295. pp. 151-161.
  70. Fedele; Wittkowski; Paresce; Scholz; Wood; Ciroi (2004). "The K-band intensity profile of R Leonis probed by VLTI/VINCI". Astronomy and Astrophysics 431 (3): 1019–1026. arXiv:astro-ph/0411133. Bibcode 2005A&A...431.1019F. doi:10.1051/0004-6361:20042013.
  71. Najarro, F.; Figer, D. F.; Hillier, D. J.; Geballe, T. R.; Kudritzki, R. P. (2009). "Metallicity in the Galactic Center: The Quintuplet Cluster". The Astrophysical Journal 691 (2): 1816. arXiv:0809.3185. Bibcode 2009ApJ...691.1816N. doi:10.1088/0004-637X/691/2/1816.
  72. Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  73. Rybicki, K. R.; Denis, C. (2001). "On the Final Destiny of the Earth and the Solar System". Icarus 151 (1): 130–137. Bibcode 2001Icar..151..130R. doi:10.1006/icar.2001.6591.
  74. Schroder, K. P.; Connon Smith, Robert (2008). "Distant Future of the Sun and Earth Revisited". Monthly Notices of the Royal Astronomical Society 386 (1): 155–163. arXiv:0801.4031. Bibcode 2008MNRAS.386..155S. doi:10.1111/j.1365-2966.2008.13022.x.
  75. https://jumk.de/astronomie/special-stars/cw-leonis.shtml
  76. Davis J, Booth AJ, Ireland MJ, Jacob AP, North JR, Owens SM, Robertson JG, Tango WJ, Tuthill PG, J.; Booth, A. J.; Ireland, M. J.; Jacob, A. P.; North, J. R.; Owens, S. M.; Robertson, J. G.; Tango, W. J. et al. (2007). "The Emergent Flux and Effective Temperature of Delta Canis Majoris". Publications of the Astronomical Society of Australia 24 (3): 151. arXiv:0709.3873. Bibcode 2007PASA...24..151D. doi:10.1071/AS07017.
  77. https://jumk.de/astronomie/big-stars/lbv-1806-20.shtml
  78. Lang, Kenneth R. (2006), Astrophysical formulae, Astronomy and astrophysics library, 1 (3 ed.), Birkhäuser, ISBN 3-540-29692-1, https://books.google.com/books?id=OvTjLcQ4MCQC&pg=PA41. The radius (R*) is given by:
    '"`UNIQ--postMath-00000001-QINU`"'
  79. https://jumk.de/astronomie/big-stars/l-carinae.shtml
  80. Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  81. Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  82. Gray, David F. (November 2010), "Photospheric Variations of the Supergiant γ Cyg", The Astronomical Journal 140 (5): 1329–1336, Bibcode 2010AJ....140.1329G, doi:10.1088/0004-6256/140/5/1329
  83. Kloppenborg, B.K.; Stencel, R.E.; Monnier, J.D.; Schaefer, G.H.; Baron, F.; Tycner, C.; Zavala, R. T.; Hutter, D. et al. (2015). "Interferometry of ɛ Aurigae: Characterization of the Asymmetric Eclipsing Disk". The Astrophysical Journal Supplement Series 220: 14. arXiv:1508.01909. Bibcode 2015ApJS..220...14K. doi:10.1088/0067-0049/220/1/14.
  84. https://jumk.de/astronomie/big-stars/albireo.shtml
  85. https://jumk.de/astronomie/big-stars/wr-102ka.shtml
  86. Ireland, M. J. et al. (May 2004), "Multiwavelength diameters of nearby Miras and semiregular variables", Monthly Notices of the Royal Astronomical Society 350 (1): 365–374, arXiv:astro-ph/0402326, Bibcode 2004MNRAS.350..365I, doi:10.1111/j.1365-2966.2004.07651.x
  87. Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  88. Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  89. https://jumk.de/astronomie/big-stars/var-83.shtml
  90. Moravveji, Ehsan; Moya, Andres; Guinan, Edward F. (April 2012). "Asteroseismology of the nearby SN-II Progenitor: Rigel. Part II. ε-mechanism Triggering Gravity-mode Pulsations?". The Astrophysical Journal 749 (1): 74–84. arXiv:1202.1836. Bibcode 2012ApJ...749...74M. doi:10.1088/0004-637X/749/1/74.
  91. =Chesneau, O.; Kaufer, A.; Stahl, O.; Colvinter, C.; Spang, A.; Dessart, L.; Prinja, R.; Chini, R. (2014). "The variable stellar wind of Rigel probed at high spatial and spectral resolution". Astronomy & Astrophysics 566: 18. arXiv:1405.0907. Bibcode 2014A&A...566A.125C. doi:10.1051/0004-6361/201322894. A125.
  92. Cruzalèbes, P.; Jorissen, A.; Rabbia, Y.; Sacuto, S.; Chiavassa, A.; Pasquato, E.; Plez, B.; Eriksson, K. et al. (2013). "Fundamental parameters of 16 late-type stars derived from their angular diameter measured with VLTI/AMBER". Monthly Notices of the Royal Astronomical Society 434: 437. arXiv:1306.3288. Bibcode 2013MNRAS.434..437C. doi:10.1093/mnras/stt1037.
  93. Richichi, A.; Roccatagliata, V. (2005). "Aldebaran's angular diameter: how well do we know it?". Astronomy and Astrophysics 433: 305–312. arXiv:astro-ph/0502181. Bibcode 2005A&A...433..305R. doi:10.1051/0004-6361:20041765.
  94. Raul E. Puebla; D. John Hillier; Janos Zsargó; David H. Cohen; Maurice A. Leutenegger (2015). "X-ray, UV and optical analysis of supergiants: ε Ori". Monthly Notices of the Royal Astronomical Society 456 (3): 2907. arXiv:1511.09365. Bibcode 2016MNRAS.456.2907P. doi:10.1093/mnras/stv2783.
  95. Fadeyev, Y. A. (2015). "Evolutionary status of Polaris". Monthly Notices of the Royal Astronomical Society 449: 1011. arXiv:1502.06463. Bibcode 2015MNRAS.449.1011F. doi:10.1093/mnras/stv412.
  96. https://jumk.de/astronomie/big-stars/dubhe.shtml
  97. 97.0 97.1 97.2 Hainich, R.; Rühling, U.; Todt, H.; Oskinova, L. M.; Liermann, A.; Gräfener, G.; Foellmi, C.; Schnurr, O. et al. (2014). "The Wolf-Rayet stars in the Large Magellanic Cloud". Astronomy & Astrophysics 565: A27. arXiv:1401.5474. Bibcode 2014A&A...565A..27H. doi:10.1051/0004-6361/201322696. Cite error: Invalid <ref> tag; name "hainich" defined multiple times with different content Cite error: Invalid <ref> tag; name "hainich" defined multiple times with different content
  98. 98.0 98.1 Hummel, C. A.; Rivinius, T.; Nieva, M. -F.; Stahl, O.; Van Belle, G.; Zavala, R. T. (2013). "Dynamical mass of the O-type supergiant in ζ Orionis A". Astronomy & Astrophysics 554: A52. arXiv:1306.0330. Bibcode 2013A&A...554A..52H. doi:10.1051/0004-6361/201321434.
  99. Schilbach, E.; Röser, S. (2008). "On the origin of field O-type stars". Astronomy and Astrophysics 489: 105. arXiv:0806.0762. Bibcode 2008A&A...489..105S. doi:10.1051/0004-6361:200809936.
  100. North, J. R.; Tuthill, P. G.; Tango, W. J.; Davis, J. (2007). "Γ2 Velorum: Orbital solution and fundamental parameter determination with SUSI". Monthly Notices of the Royal Astronomical Society 377: 415. arXiv:astro-ph/0702375. Bibcode 2007MNRAS.377..415N. doi:10.1111/j.1365-2966.2007.11608.x.
  101. Richichi, A.; Percheron, I.; Khristoforova, M. (February 2005), "CHARM2: An updated Catalog of High Angular Resolution Measurements", Astronomy and Astrophysics 431: 773–777, Bibcode 2005A&A...431..773R, doi:10.1051/0004-6361:20042039
  102. 102.0 102.1 Williams, S. J.; Gies, D. R.; Henry, T. J.; Orosz, J. A.; McSwain, M. V.; Hillwig, T. C.; Penny, L. R.; Sonneborn, G. et al. (2008). "Dynamical Masses for the Large Magellanic Cloud Massive Binary System [L72] LH 54-425". The Astrophysical Journal 682: 492–498. arXiv:0802.4232. Bibcode 2008ApJ...682..492W. doi:10.1086/589687.
  103. https://jumk.de/astronomie/big-stars/capella.shtml
  104. Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  105. http://exoplanets.co/exoplanets-tutorial/extrasolar-planet-hd-209458-b.html
  106. Cohen, David H. et al. (June 2008), "Chandra spectroscopy of the hot star βCrucis and the discovery of a pre-main-sequence companion", Monthly Notices of the Royal Astronomical Society 386 (4): 1855–1871, arXiv:0802.4084, Bibcode 2008MNRAS.386.1855C, doi:10.1111/j.1365-2966.2008.13176.x
  107. https://jumk.de/astronomie/big-stars/praecipua.shtml
  108. Harrington, David; Koenigsberger, Gloria; Moreno, Edmundo; Kuhn, Jeffrey (October 2009). "Line-profile Variability from Tidal Flows in Alpha Virginis (Spica)". The Astrophysical Journal 704 (1): 813–830. arXiv:0908.3336. Bibcode 2009ApJ...704..813H. doi:10.1088/0004-637X/704/1/813.
  109. Clark, J. S.; Ritchie, B. W.; Negueruela, I.; Crowther, P. A.; Damineli, A.; Jablonski, F. J.; Langer, N. (2011). "A VLT/FLAMES survey for massive binaries in Westerlund 1". Astronomy & Astrophysics 531: A28. Bibcode 2011A&A...531A..28C. doi:10.1051/0004-6361/201116990.
  110. Fok; Jun-ichi Nakashima; Yung; Chih-Hao Hsia; Shuji Deguchi (2012). "Maser Observations of Westerlund 1 and Comprehensive Considerations on Maser Properties of Red Supergiants Associated with Massive Clusters". The Astrophysical Journal 760: 65. arXiv:1209.6427v1. Bibcode 2012ApJ...760...65F. doi:10.1088/0004-637X/760/1/65.
  111. Clark, J. S.; Ritchie, B. W.; Negueruela, I. (2010). "A serendipitous survey for variability amongst the massive stellar population of Westerlund 1". Astronomy and Astrophysics 514: A87. Bibcode 2010A&A...514A..87C. doi:10.1051/0004-6361/200913820.
  112. https://arxiv.org/abs/1207.1850
  113. Habets, G. M. H. J.; Heintze, J. R. W. (November 1981). "Empirical bolometric corrections for the main-sequence". Astronomy and Astrophysics Supplement 46: 193–237. Bibcode 1981A&AS...46..193H. Page 225 "Table IV" #178
  114. Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  115. https://www.digitaltrends.com/cool-tech/uy-scuti-everything-to-know-about-biggest-star-in-the-universe/
  116. Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  117. Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  118. http://iska.exblog.jp/3908884/
  119. http://www.phy.cuhk.edu.hk/opus/comments_2011/hckrep.pdf
  120. Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  121. Kuiper, G. P. (February 1936). "The White Dwarf A.C.+70°8247, the Smallest Star Known". Journal of the Royal Astronomical Society of Canada 30: 48. Bibcode 1936JRASC..30...48K.
  122. Peter Thejll; Harry L. Shipman;. "Temperature, radius, and rotational velocity of Sirius B". Publications of the Astronomical Society of the Pacific (Astronomical Society of the Pacific) 98 (608): 922-926. Bibcode 1986PASP...98..922T. doi:10.1086/131845. ISSN 0004-6280. https://www.jstor.org/stable/40678784?seq=1#page_scan_tab_contents.
  123. crispysmith11 (2011-12-27), Asteroids, moons, planets, stars, nebulae, galaxies, clusters: Universe in Perspective update 2012, https://www.youtube.com/watch?v=J4ml5Gp6974&t=, retrieved 2017-10-20
  124. J. L. Provencal; H. L. Shipman; F. Wesemael; P. Bergeron; H. E. Bond; James Liebert; E. M. Sion; (30 September 1996). "Wide Field Planetary Camera 2 Photometry of the Bright, Mysterious White Dwarf Procyon B". The Astrophysical Journal (The American Astronomical Society) 480 (2). Bibcode 1997ApJ...480..777P. doi:10.1086/304003. http://iopscience.iop.org/article/10.1086/304003/fulltext/35322.text.html.
  125. Giammichele, N.; Bergeron, P.; Dufour, P. (April 2012), "Know Your Neighborhood: A Detailed Model Atmosphere Analysis of Nearby White Dwarfs", The Astrophysical Journal Supplement 199 (2): 29, arXiv:1202.5581, Bibcode 2012ApJS..199...29G, doi:10.1088/0067-0049/199/2/29. Based on log L/L = −3.77.
  126. Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  127. Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  128. Alexander von Boetticher, Amaury H.M.J. Triaud, Didier Queloz, Sam Gill, Monika Lendl, Laetitia Delrez, David R. Anderson, Andrew Collier Cameron, Francesca Faedi, Michaël Gillon, Yilen Gómez Maqueo Chew, Leslie Hebb, Coel Hellier, Emmanuël Jehin, Pierre F.L. Maxted, David V. Martin, Francesco Pepe, Don Pollacco, Damien Ségransan, Barry Smalley, Stéphane Udry, Richard West (12 June 2017). "The EBLM project; III. A Saturn-size low-mass star at the hydrogen-burning limit". Astronomy & Astrophysics. arXiv:1706.08781. Bibcode 2017arXiv170608781V. EBLM_III.
  129. Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  130. 130.0 130.1 Sergio B. Dieterich; Todd J. Henry; Wei-Chun Jao; Jennifer G. Winters; Altonio D. Hosey; Adric R. Riedel; John P. Subasavage (May 2014). "The Solar Neighborhood XXXII. The Hydrogen Burning Limit". The Astronomical Journal 147 (5): 25. arXiv:1312.1736. Bibcode 2014AJ....147...94D. doi:10.1088/0004-6256/147/5/94. 94.
  131. Gillon, M.; Triaud, A. H. M. J.; Demory, B.-O.; Jehin, E.; Agol, E.; Deck, K. M.; Lederer, S. M.; De Wit, J. et al. (2017). "Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1". Nature 542 (7642): 456. doi:10.1038/nature21360. http://www.eso.org/public/archives/releases/sciencepapers/eso1706/eso1706a.pdf.
  132. Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  133. Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  134. Pont, F.; Melo, C. H. F.; Bouchy, F.; Udry, S.; Queloz, D.; Mayor, M.; Santos, N. C. (27 January 2005). "A planet-sized transiting star around OGLE-TR-122. Accurate mass and radius near the hydrogen-burning limit". Astronomy and Astrophysics 433 (2): L21-L24. arXiv:astro-ph/0501611. Bibcode 2005A&A...433L..21P. doi:10.1051/0004-6361:200500025.
  135. 135.0 135.1 135.2 B.-O. Demory; D. Segransan; T. Forveille; D. Queloz; J.-L. Beuzit; X. Delfosse; E. Di Folco; P. Kervella et al. (2 June 2009). "Mass-radius relation of low and very low-mass stars revisited with the VLTI". Astronomy and Astrophysics 505 (1): 205–215. arXiv:0906.0602. Bibcode 2009A&A...505..205D. doi:10.1051/0004-6361/200911976.
  136. Doyle, J. G. et al. (1990). "Optical and infrared photometry of dwarf M and K stars". Astronomy and Astrophysics 235 (1-2): 335–339. Bibcode 1990A&A...235..335D.
  137. Johnson, H. M.; Wright, C. D. (November 1983). "Predicted infrared brightness of stars within 25 parsecs of the Sun". Astrophysical Journal Supplement Series 53: 643–711, 705. Bibcode 1983ApJS...53..643J. doi:10.1086/190905.
  138. 138.0 138.1 J.C. Morales; I. Ribas; C. Jordi; G. Torres; J. Gallardo; E.F. Guinan; D. Charbonneau; M. Wolf et al. "Absolute properties of the low-mass eclipsing binary CM Draconis". The Astrophysical Journal 691 (2): 1400–1411. arXiv:0810.1541. Bibcode 2009ApJ...691.1400M. doi:10.1088/0004-637X/691/2/1400.
  139. Direct evidence of a sub-stellar companion around CT Cha, T. O. B. Schmidt et al., accepted for publication in Astronomy and Astrophysics, Bibcode2008arXiv0809.2812S, arXiv:0809.2812.
  140. Cite error: Invalid <ref> tag; no text was provided for refs named ek
  141. 141.0 141.1 141.2 141.3 141.4 141.5 141.6 Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  142. 142.00 142.01 142.02 142.03 142.04 142.05 142.06 142.07 142.08 142.09 142.10 142.11 142.12 142.13 Cite error: Invalid <ref> tag; no text was provided for refs named EPE
  143. Anderson, D. R. et al. (2010). "WASP-17b: An Ultra-Low Density Planet in a Probable Retrograde Orbit". The Astrophysical Journal 709 (1): 159–167. arXiv:0908.1553. Bibcode 2010ApJ...709..159A. doi:10.1088/0004-637X/709/1/159. http://iopscience.iop.org/0004-637X/709/1/159/fulltext/.
  144. 144.0 144.1 144.2 144.3 144.4 144.5 Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  145. Daemgen, S.; Hormuth, F.; Brandner, W.; Bergfors, C.; Janson, M.; Hippler, S.; Henning, T. (200). "Binarity of transit host stars - Implications for planetary parameters". Astronomy and Astrophysics 498: 567–574. arXiv:0902.2179. Bibcode 2009A&A...498..567D. doi:10.1051/0004-6361/200810988. http://www.mpia.de/homes/henning/Publications/daemgen.pdf.
  146. Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  147. Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  148. Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  149. Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  150. Laurance R. Doyle; Hans-Jörg Deeg; Timothy M. Brown (September 2000). "Searching for Shadows of Other Earths". Scientific American 283: 59–65. doi:10.1038/scientificamerican0900-58. PMID 10976467. http://www.iac.es/proyecto/tep/papers2000/SciAmtransit.pdf.
  1. for Case I in paper page 6, others range from 1.41 to 2.07 Jupiter radii.
<comments />
As a reminder, article comments are only for discussions on how to improve the article. Please direct other comments to a user's talk page. Please be formal and do not use excessive uppercase. Please be advised you may receive an automatic block if you break the article comments policy. For information regarding what is acceptable/not acceptable in article comments, please message Icons-flag-ru.png Joey (talk), Natalia (talk), Icons-flag-fr.png ynoss (talk), or Icons-flag-ca.png Daniel (older account/talk).


Ynoss[edit]

Relative sizes of the planets in the Solar System and several well-known stars.
Below is an ordered is a list of the largest stars currently known to humans in terms of diameter relative to the diameter of the Sun. The orbits of the planets of our Solar System, the Asteroid Belt, and the Habitable Zone are included for the sake of comparison.[1]

The exact order of this list is very incomplete, as great uncertainties currently remain, especially when deriving various important parameters used in calculations, such as stellar luminosity and effective temperature. Often stellar radii can only be expressed as an average or within a large range of values. Values for stellar radii vary significantly in sources and throughout the literature, mostly as the boundary of the very tenuous atmosphere (opacity) greatly differs depending on the wavelength of light in which the star is observed.

Radii of several stars can be directly obtained by stellar interferometry. Other methods can use lunar occultations or from eclipsing binaries, which can be used to test other indirect methods of finding true stellar size. Only a few useful supergiant stars can be occulted by the Moon, including Antares and Aldebaran. Examples of eclipsing binaries include Epsilon Aurigae, VV Cephei, HR 5171, and the red-giant binary system KIC 9246715 in the constellation of Cygnus.[2]


Caveats[edit]

The extreme red hypergiant star VY Canis Majoris in the constellation Canis Major compared to the Sun and Earth's orbit.

Complex issues exist in determining the true radii of the largest stars, which in many cases do display significant errors. The following lists are generally based on various considerations or assumptions that include:

  • Largest stars are usually expressed in units of the solar radius (D), where 1.00 D equals 695,700 kilometres.
  • Stellar radii or diameters are usually only approximated using Stefan–Boltzmann law for the deduced stellar luminosity and effective surface temperature;
  • Stellar distances, and their errors, for most, remain uncertain or poorly determined;
  • Many supergiant stars have extended atmospheres and many are embedded within opaque dust shells, making their true effective temperatures highly uncertain;
  • Many extended supergiant atmospheres also significantly change in size over time, regularly or irregularly pulsating over several months or years as variable stars. This makes adopted luminosities poorly known and may significantly change the quoted radii;
  • Other direct methods for determining stellar radii, rely on lunar occultations or from eclipses in binary systems. This is only possible for a very small number of stars;
  • Based on various theoretical evolutionary models, few stars will exceed 1,500–2,000 times the Sun (roughly 3,715 K and Mbol = −9 (320,000 L)). Such limits maybe also depend on the stellar metallicity.[3]

Extragalactic large stars[edit]

In this list are some examples of more distant extragalactic stars, which may have slightly different properties and natures than the currently largest known stars in the Milky Way:

  • Some red supergiants in the Magellanic Clouds are suspected to have slightly different limiting temperatures and luminosities. Such stars may exceed accepted limits by undergoing large eruptions or change their spectral types over just a few months. Humphreys et al., for example, calculates the maximum size for a Magellanic cloud star (same for a Milky Way star) as approximately 2,600 D (roughly 3,000 K and 500,000 L).[4]
  • A survey of the Magellanic Clouds has catalogued many red supergiants, where most of them exceed 700 R (490,000,000 km; 3.3 AU; 300,000,000 mi). Largest of these is about 1,200-1,300 D.[5]


List[edit]

List of largest known stars
Star name Solar radii
(Sun = 1)
Method Notes
VY Canis Majoris (Humphreys et al estimate) (1,800 -) 2,200[6][7] L/Teff The largest star known,[8] assuming that the largest parameter of Westerlund 1-26 is not correct.
Orbit of Saturn 1,940 - 2,169 Reported for reference
VV Cephei A (1,050[9]–) 1,900[3][10] VV Cep A is a highly distorted star in a close binary system, losing mass to the secondary for at least part of its orbit.
MY Cephei 1,749[11] - 2,385[12] L/Teff Radii made using the Stefan-Boltzmann law.
UY Scuti 1,708 ± 192[13] AD
NML Cygni 1,640[14] L/Teff Other estimates range from 1,183 D[15] to 2,770 D[14].
V838 Monocerotis (at largest) 1,570 ± 400[16] Variable star that erupted rapidly in size on 2012. V838 Monocerotis has been erroneously portrayed as the claimed planet "Nibiru" or "Planet X".
WOH G64 1,540[17] L/Teff The largest star in the Large Magellanic Cloud.
RW Cephei 1,535 [18][19]
Westerlund 1-26 1,530[20]–2,550 [21] Located in the star cluster Westerlund 1. Calculated with the Stefan-Boltzmann Law (see below).
VX Sagittarii 1,520[22] - 1,550[23]
V354 Cephei (690-)[22] 1,520[3]
RSGC1-F02 1,498[24]
KW Sagittarii (1,009[13]-) 1,460[3] AD & L/Teff
RSGC1-F01 1,435[24]
VY Canis Majoris (Wittowski et al estimate) 1,420± 120[25] AD The size of VY CMa was revised in 2012 through a newly improved measurement which result the diameter being the highest among well-characterized stars (identifing VY CMa as the largest known star).[8] Other stars above this value could have less accurate radius estimates.
KY Cygni 1,420[3]
Mu Cephei (Herschel's "Garnet Star") (650[26]-) 1,420[3] The reddest star in the night sky in terms of the B-V color index.
HR 5171 A 1,315 ± 260[27] AD The largest known yellow hypergiant.
SMC 18136 1,310[5] The largest star in the SMC.
J004424.94+412322.3 1,300[28] L/Teff The largest star in the Andromeda Galaxy.
LMC 136042 1,240[5]
BI Cygni 1,240[3] L/Teff
Westerlund 1-237 1,233[29]
S Persei 1,230[3] AD & L/Teff A red hypergiant localed in the Perseus Double Cluster.
SMC 5092 1,220[5]
LMC 175464 1,200[5]
LMC 135720 1,200[5]
RAFGL 2139 1,200[30] RAFGL 2139 is a rare red supergiant companion to WR 114 that has a bow shock.
PZ Cassiopeiae 1,190[3] L/Teff
SMC 69886 1,190[5]
RSGC1-F05 1,177[24] L/Teff
RSGC1-F03 1,168[24]
LMC 119219 1,150[5]
RSGC1-F08 1,146[24]
BC Cygni 1,140[3]'"`UNIQ--postMath-00000002-QINU`"'[31] Other recent estimates range from 856 D to 1,553 D.[32]
SMC 10889 1,130[5]
LMC 141430 1,110[5]
LMC 175746 '"`UNIQ--postMath-00000003-QINU`"'[5]
RSGC1-F13 '"`UNIQ--postMath-00000004-QINU`"'[24]
RT Carinae '"`UNIQ--postMath-00000005-QINU`"'[3]
RSGC1-F04 '"`UNIQ--postMath-00000006-QINU`"'[24]
LMC 174714 '"`UNIQ--postMath-00000007-QINU`"'[5]
LMC 68125 '"`UNIQ--postMath-00000008-QINU`"'[5]
SMC 49478 '"`UNIQ--postMath-00000009-QINU`"'[5]
SMC 20133 '"`UNIQ--postMath-0000000A-QINU`"'[5]
V396 Centauri '"`UNIQ--postMath-0000000B-QINU`"'[3]
SMC 8930 '"`UNIQ--postMath-0000000C-QINU`"'[5]
Orbit of Jupiter '"`UNIQ--postMath-0000000D-QINU`"' Reported for reference
HV 11423 '"`UNIQ--postMath-0000000E-QINU`"'[33] L/Teff HV 11423 is variable in spectral type (observed from K0 to M5), thus probably also in diameter. In October 1978, it was a star of M0I type.
CK Carinae '"`UNIQ--postMath-0000000F-QINU`"'[3]
SMC 25879 '"`UNIQ--postMath-00000010-QINU`"'[5]
LMC 142202 '"`UNIQ--postMath-00000011-QINU`"'[5]
LMC 146126 '"`UNIQ--postMath-00000012-QINU`"'[5]
LMC 67982 '"`UNIQ--postMath-00000013-QINU`"'[5]
U Lacertae '"`UNIQ--postMath-00000014-QINU`"'[22] L/Teff
RSGC1-F11 '"`UNIQ--postMath-00000015-QINU`"'[24]
LMC 143877 '"`UNIQ--postMath-00000016-QINU`"'[5]
SMC 46497 '"`UNIQ--postMath-00000017-QINU`"'[5]
LMC 140296 '"`UNIQ--postMath-00000018-QINU`"'[5]
RSGC1-F09 '"`UNIQ--postMath-00000019-QINU`"'[24] L/Teff
NR Vulpeculae '"`UNIQ--postMath-0000001A-QINU`"'[3]
SMC 12322 '"`UNIQ--postMath-0000001B-QINU`"'[5]
LMC 177997 '"`UNIQ--postMath-0000001C-QINU`"'[5]
SMC 59803 '"`UNIQ--postMath-0000001D-QINU`"'[5]
GCIRS 7 '"`UNIQ--postMath-0000001E-QINU`"' ± '"`UNIQ--postMath-0000001F-QINU`"'[34] AD
Betelgeuse (Alpha Orionis) '"`UNIQ--postMath-00000020-QINU`"'[35] '"`UNIQ--postMath-00000021-QINU`"' ± '"`UNIQ--postMath-00000022-QINU`"' The second brightest star in the Orion constellation and the 9th brightest overall.
SMC 50840 '"`UNIQ--postMath-00000023-QINU`"'[5]
RSGC1-F10 '"`UNIQ--postMath-00000024-QINU`"'[24] L/Teff
S Cassiopeiae '"`UNIQ--postMath-00000025-QINU`"'[36][37]
IX Carinae '"`UNIQ--postMath-00000026-QINU`"'[3]
HV 2112 '"`UNIQ--postMath-00000027-QINU`"'[38] Most likely candidate for a Thorne-Zytkow Object. Calculated with the Stefan-Boltzmann Law.
RSGC1-F07 '"`UNIQ--postMath-00000028-QINU`"'[24]
LMC 54365 '"`UNIQ--postMath-00000029-QINU`"'[5]
NSV 25875 '"`UNIQ--postMath-0000002A-QINU`"'[15]
LMC 109106 '"`UNIQ--postMath-0000002B-QINU`"'[5]
RSGC1-F06 '"`UNIQ--postMath-0000002C-QINU`"'[24]
LMC 116895 '"`UNIQ--postMath-0000002D-QINU`"'[5]
SMC 30616 '"`UNIQ--postMath-0000002E-QINU`"'[5]
LMC 64048 '"`UNIQ--postMath-0000002F-QINU`"'[5]
V437 Scuti '"`UNIQ--postMath-00000030-QINU`"'[15]
V602 Carinae '"`UNIQ--postMath-00000031-QINU`"'[3]'"`UNIQ--postMath-00000032-QINU`"'[39] L/Teff & AD
V669 Cassiopeiae '"`UNIQ--postMath-00000033-QINU`"'[15] L/Teff
SMC 55681 '"`UNIQ--postMath-00000034-QINU`"'[5]
SMC 15510 '"`UNIQ--postMath-00000035-QINU`"'[5]
LMC 61753 '"`UNIQ--postMath-00000036-QINU`"'[5]
LMC 62090 '"`UNIQ--postMath-00000037-QINU`"'[5]
SMC 11709 '"`UNIQ--postMath-00000038-QINU`"'[5]
V1185 Scorpii '"`UNIQ--postMath-00000039-QINU`"'[15] L/Teff
Outer limits of the asteroid belt '"`UNIQ--postMath-0000003A-QINU`"' Reported for reference
LMC 142199 '"`UNIQ--postMath-0000003B-QINU`"'[5]
Antares A (Alpha Scorpii A) '"`UNIQ--postMath-0000003C-QINU`"'[40] (varies by '"`UNIQ--postMath-0000003D-QINU`"')[41] The brightest star in the Scorpius constellation and the 15th brightest overall.
Eta Carinae A (Tseen She) '"`UNIQ--postMath-0000003E-QINU`"'[42] Previously thought to be the most massive single star, but in 2005 it was realized to be a binary system. During the Great Eruption, it was 1,400 D.[43] Older estimates gives 85–195 D.[44]
LMC 134383 '"`UNIQ--postMath-0000003F-QINU`"'[5]
BO Carinae '"`UNIQ--postMath-00000040-QINU`"'[3] L/Teff
LMC 142907 '"`UNIQ--postMath-00000041-QINU`"'[5]
SU Persei '"`UNIQ--postMath-00000042-QINU`"'[3] All in the Perseus Double Cluster.
RS Persei '"`UNIQ--postMath-00000043-QINU`"'[45]'"`UNIQ--postMath-00000044-QINU`"'[3] AD & L/Teff
AV Persei '"`UNIQ--postMath-00000045-QINU`"'[3] L/Teff
V355 Cepheus '"`UNIQ--postMath-00000046-QINU`"'[3]
V915 Scorpii '"`UNIQ--postMath-00000047-QINU`"'[46]
S Cephei '"`UNIQ--postMath-00000048-QINU`"'[47]
SMC 11939 '"`UNIQ--postMath-00000049-QINU`"'[5]
HD 303250 '"`UNIQ--postMath-0000004A-QINU`"'[3]
V382 Carinae '"`UNIQ--postMath-0000004B-QINU`"'[48] The brightest yellow hypergiant in the night sky, one of the rarest types of star. Achmad (1992) calculates 700 ± 250 D.[49]
RU Virginis '"`UNIQ--postMath-0000004C-QINU`"'[47]
LMC 137818 '"`UNIQ--postMath-0000004D-QINU`"'[5]
SMC 48122 '"`UNIQ--postMath-0000004E-QINU`"'[5]
SMC 56732 '"`UNIQ--postMath-0000004F-QINU`"'[5]
V648 Cassiopeiae '"`UNIQ--postMath-00000050-QINU`"'[3] L/Teff
TV Geminorum '"`UNIQ--postMath-00000051-QINU`"'[50] '"`UNIQ--postMath-00000052-QINU`"'[3]
HD 179821 '"`UNIQ--postMath-00000053-QINU`"'[51]
LMC 169754 '"`UNIQ--postMath-00000054-QINU`"'[5]
LMC 65558 '"`UNIQ--postMath-00000055-QINU`"'[5]
V528 Carinae '"`UNIQ--postMath-00000056-QINU`"'[3] L/Teff
The following well-known stars are listed for the purpose of comparison.
Pi1 Gruis '"`UNIQ--postMath-00000057-QINU`"'[52] Pi1 Gruis is a red giant with giant convention loops on its surface.[53]
RW Cygni '"`UNIQ--postMath-00000058-QINU`"'[31]'"`UNIQ--postMath-00000059-QINU`"'[3]
VY Canis Majoris (Massey et al estimate) '"`UNIQ--postMath-0000005A-QINU`"'[54] L/Teff
119 Tauri '"`UNIQ--postMath-0000005B-QINU`"'[55]'"`UNIQ--postMath-0000005C-QINU`"'[56] Can be occulted (blocked out of view) by the Moon, allowing accurate determination of its apparent diameter.
Solar System's Habitable Zone '"`UNIQ--postMath-0000005D-QINU`"' (mean)[57][58][59][60] Reported for reference
Rho Cassiopeiae '"`UNIQ--postMath-0000005E-QINU`"'[61]
Inner limits of the asteroid belt '"`UNIQ--postMath-0000005F-QINU`"' Reported for reference
Sigma Canis Majoris '"`UNIQ--postMath-00000060-QINU`"'[3] The indigenous Wergaia people of southeast Australia saw it as Unurgunite, flanked by his wives.[62]
Mira A (Omicron Ceti) '"`UNIQ--postMath-00000061-QINU`"'[63] Prototype Mira variable.
R Lepus '"`UNIQ--postMath-00000062-QINU`"'[64]
V509 Cassiopeiae '"`UNIQ--postMath-00000063-QINU`"'[65] Yellow Hypergiant star.
Iota Scorpii (Apollyon) '"`UNIQ--postMath-00000064-QINU`"'[66]
V838 Monocerotis (at smallest) '"`UNIQ--postMath-00000065-QINU`"'[67] Variable star that erupted rapidly in size on 2012. V838 Monocerotis has been erroneously portrayed as the claimed planet "Nibiru" or "Planet X".
S Doradus '"`UNIQ--postMath-00000066-QINU`"'[68] Prototype Luminous Blue Variable. Also a very luminous star.[69]
R Doradus '"`UNIQ--postMath-00000067-QINU`"' ± '"`UNIQ--postMath-00000068-QINU`"'[70] Star with the second largest apparent size after the Sun.
IRC +10420 '"`UNIQ--postMath-00000069-QINU`"'[71]'"`UNIQ--postMath-0000006A-QINU`"'[15] A yellow hypergiant that has increased its temperature into the LBV range.
Tail of Comet Hyakutake '"`UNIQ--postMath-0000006B-QINU`"' Reported for reference
Chi Cygni '"`UNIQ--postMath-0000006C-QINU`"'[72] Variable star located in the Cygnus constellation.
HR 5171 Ab '"`UNIQ--postMath-0000006D-QINU`"'[27], '"`UNIQ--postMath-0000006E-QINU`"' ± '"`UNIQ--postMath-0000006F-QINU`"'[73] AD The yellow hypergiant companion of HR 5171 A.
The Pistol Star '"`UNIQ--postMath-00000070-QINU`"'[74] Blue hypergiant; among the most massive and luminous stars known.
IRAS 17163-3907 (the Fried egg nebula) '"`UNIQ--postMath-00000071-QINU`"'
Orbit of Mars '"`UNIQ--postMath-00000072-QINU`"' Reported for reference
Delta2 Lyrae '"`UNIQ--postMath-00000073-QINU`"'[75]
Alpha Herculis (Ras Algethi) '"`UNIQ--postMath-00000074-QINU`"'[76]
Sun's red giant phase '"`UNIQ--postMath-00000075-QINU`"' The hydrogen in the core would be exhausted in 4 billion years. In 5 billion years, The Sun would reach the tip of the red-giant branch of the Hertzsprung–Russell diagram. Reported for reference
Cygnus OB2-12 '"`UNIQ--postMath-00000076-QINU`"'[77]
Zeta Cephei '"`UNIQ--postMath-00000077-QINU`"'[78]
W Hydrae '"`UNIQ--postMath-00000078-QINU`"'
HR Carinae '"`UNIQ--postMath-00000079-QINU`"'[79]
Wezen '"`UNIQ--postMath-0000007A-QINU`"'[80] This star is present on the flag of Brazil.[81]
Deneb (Alpha Cygni) '"`UNIQ--postMath-0000007B-QINU`"'[82] - '"`UNIQ--postMath-0000007C-QINU`"'[83]
Orbit of Earth '"`UNIQ--postMath-0000007D-QINU`"' Reported for reference
Omicron1 Cygni (31 Cygni) '"`UNIQ--postMath-0000007E-QINU`"'[84]
RS Puppis '"`UNIQ--postMath-0000007F-QINU`"'[85]
l Carinae '"`UNIQ--postMath-00000080-QINU`"'[86]
Orbit of Venus '"`UNIQ--postMath-00000081-QINU`"' Reported for reference
Gamma Cygni (Sadr) '"`UNIQ--postMath-00000082-QINU`"'[87]
Enif (Epsilon Pegasi) '"`UNIQ--postMath-00000083-QINU`"'[88][possible unreliable source?] L/Teff
Epsilon Aurigae A (Almaaz) '"`UNIQ--postMath-00000084-QINU`"'[89] Epsilon Aurigae Aur was incorrectly hailed as the largest star with a radius 2,000 D or 3,000 D,[90] even though it later turned out not to be an "infrared light star" but rather a dusk torus surrounding the system.
VV Storm[citation needed] (V533 Carinae, y Carinae) '"`UNIQ--postMath-00000085-QINU`"'[91]
Gacrux '"`UNIQ--postMath-00000086-QINU`"'[92] Closest Red Giant to the Earth.
Beta Pegasi (Scheat) '"`UNIQ--postMath-00000087-QINU`"'
Peony Star '"`UNIQ--postMath-00000088-QINU`"'[93] Candidate for most luminous star in the Milky Way.[94]
Orbit of Mercury '"`UNIQ--postMath-00000089-QINU`"' Reported for reference
R Scuti '"`UNIQ--postMath-0000008A-QINU`"'[95]'"`UNIQ--postMath-0000008B-QINU`"'[96] The first variable star discovered in the Scutum constellation.
Gamma Andromedae '"`UNIQ--postMath-0000008C-QINU`"'[97][possible unreliable source?]
Rigel (Beta Orionis) '"`UNIQ--postMath-0000008D-QINU`"'[98]'"`UNIQ--postMath-0000008E-QINU`"'[99]
Sadalmelik (Alpha Aquarii) '"`UNIQ--postMath-0000008F-QINU`"'[100]
P Cygni '"`UNIQ--postMath-00000090-QINU`"' Earliest known candidate of a Luminous Blue Variable.
Canopus (Alpha Carinae) '"`UNIQ--postMath-00000091-QINU`"'[101] Second brightest star in the night sky.
Polis[102] (Mu Sagittarii) '"`UNIQ--postMath-00000092-QINU`"'[103]
Alpha Apodis '"`UNIQ--postMath-00000093-QINU`"'[104] L/Teff
Alphard (Alpha Hydrae) '"`UNIQ--postMath-00000094-QINU`"'[105] - '"`UNIQ--postMath-00000095-QINU`"'[106]
Eltanin '"`UNIQ--postMath-00000096-QINU`"'[107] L/Teff
LBV 1806-20 '"`UNIQ--postMath-00000097-QINU`"'[108] Once a candidate for the most luminous star in the Milky Way.
Aldebaran (Alpha Tauri) '"`UNIQ--postMath-00000098-QINU`"'[109]
Schedar (Schedir, Alpha Cassiopeiae) '"`UNIQ--postMath-00000099-QINU`"'[110] A/D
Kochab (Beta Ursae Minoris) '"`UNIQ--postMath-0000009A-QINU`"'[106] L/Teff
R136a1 '"`UNIQ--postMath-0000009B-QINU`"'[111] Also on record as the most massive and luminous star known.[112]
Arcturus (Alpha Boötis) '"`UNIQ--postMath-0000009C-QINU`"'[113] Brightest star in the northern hemisphere.
R136a2 '"`UNIQ--postMath-0000009D-QINU`"'[114]
HDE 226868 '"`UNIQ--postMath-0000009E-QINU`"'[115] The supergiant companion of the famous black hole Cygnus X-1. The black hole is 500,000 times smaller than the star.
Zeta Orionis (Alnitak) '"`UNIQ--postMath-0000009F-QINU`"' [116] The first star in Orion's belt.
Gamma Velorum (Regor) '"`UNIQ--postMath-000000A0-QINU`"'[117] The brightest and closest Wolf Rayet star in the night sky.
Hamal (Alpha Aries) '"`UNIQ--postMath-000000A1-QINU`"'[106] L/Teff
VV Cephei B '"`UNIQ--postMath-000000A2-QINU`"'[118]'"`UNIQ--postMath-000000A3-QINU`"'[119] The B-type main sequence companion of VV Cephei A.
WR 104 '"`UNIQ--postMath-000000A4-QINU`"' Located 8,000 light years away from us, this star could destroy life on Earth with its self-destructive supernova.[120]
Sun '"`UNIQ--postMath-000000A5-QINU`"' The largest object in the Solar System.
Reported for reference

If a star was marked with AD in the Method column then its diameter was measured using its distance from the Sun and its angular diameter.

Stefan-Boltzmann Law[edit]

If a star was marked with '"`UNIQ--postMath-000000A6-QINU`"''"`UNIQ--postMath-000000A7-QINU`"' in the Method column then its diameter was measured using the Stefan-Boltzmann Law. Stellar diameters are usually approximated using the Stefan–Boltzmann law with the star's luminosity and effective temperature. The Stefan-Boltzmann law states that the total radiant heat energy emitted from a surface is proportional to the fourth power of its absolute temperature.

To calculate a star's diameter with the Stefan-Boltzmann law you must do the following calculation:

Square root of '"`UNIQ--postMath-000000A8-QINU`"' where '"`UNIQ--postMath-000000A9-QINU`"' represents the effective temperature in Kelvin (not Celsius) and '"`UNIQ--postMath-000000AA-QINU`"' represents the luminosity in terms greater than the Sun.

Temperature of stars[edit]

The temperature of stars other than the Sun can be approximated with the Stefan-Boltzmann Law using a similar means by treating the emitted energy as a black body radiation.[121] So:

'"`UNIQ--postMath-000000AB-QINU`"'

where L is the luminosity, σ is the Stefan–Boltzmann constant, R is the stellar radius and T is the effective temperature. This same formula can be used to compute the approximate radius of a main sequence star relative to the sun:

'"`UNIQ--postMath-000000AC-QINU`"'

where D, is the Sun's diameter, L is the solar luminosity, and so forth.

With the Stefan–Boltzmann law, astronomers can easily infer the radii of stars. The law is also met in the thermodynamics of Black Holes in so-called Hawking radiation.

References[edit]

  1. Their values come from conversion between Astronomical Units (the distance between the Earth and the Sun, 149 600 000 km) and solar diameters.
  2. Hełminiak, K.G.; Ukita, N.; Kambe, E.; Konacki, M. (2015). "Absolute Stellar Parameters of KIC 09246715: A Double-giant Eclipsing System with a Solar-like Oscillator". The Astrophysical Journal Letters 813 (2): L25. arXiv:1509.03340. Bibcode 2015ApJ...813L..25H. doi:10.1088/2041-8205/813/2/L25.
  3. 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 3.24 3.25 3.26 Table 4 in https://doi.org/10.1086%2F430901
  4. Humphreys, Roberta M.; Davidson, Kris; Grammer, Skyler; Kneeland, Nathan; Martin, John C.; Kerstin Weis; Burggraf, Birgitta (2013). "Luminous and Variable Stars in M31 and M33. I. The Warm Hypergiants and Post-red Supergiant Evolution" (in en). The Astrophysical Journal 773 (1): 46. doi:10.1088/0004-637X/773/1/46. ISSN 0004-637X. http://stacks.iop.org/0004-637X/773/i=1/a=46.
  5. 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 5.10 5.11 5.12 5.13 5.14 5.15 5.16 5.17 5.18 5.19 5.20 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.30 5.31 5.32 5.33 5.34 5.35 5.36 5.37 5.38 5.39 5.40 5.41 5.42 5.43 5.44 5.45 Levesque, Emily M.; Massey, Philip; Olsen, K.A.G.; Plez, Bertrand; Meynet, Georges; Maeder, Andre (2006). "The Effective Temperatures and Physical Properties of Magellanic Cloud Red Supergiants: The Effects of Metallicity". The Astrophysical Journal 645 (2): 1102. arXiv:astro-ph/0603596. Bibcode 2006ApJ...645.1102L. doi:10.1086/504417.
  6. bibcode=2006astro.ph.10433H
  7. According to Alcolea et al. 2013's paper, VY Canis Majoris is referred as the largest known star. As it has been described as "the largest known star" according to Alcolea et al. 2013's paper, it is currently at the top although Westerlund 1-26 could be as large as 2,550 D, making it larger than VY CMa.
  8. 8.0 8.1 https://www.aanda.org/articles/aa/abs/2013/11/aa21683-13/aa21683-13.html
  9. bibcode = 2008AJ....136.1312H
  10. {{{1}}}
  11. Calculated using the luminosity and effective temperature, using sources http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1994ApJS...93..187B&data_type=PDF_HIGH&whole_paper=YES&type=PRINTER&filetype=.pdf and https://doi.org/10.1051/0004-6361/201219078
  12. Calculated using the luminosity and effective temperature, using https://doi.org/10.1051/0004-6361/201219078https://doi.org/10.1086/153171
  13. 13.0 13.1 https://www.aanda.org/articles/aa/abs/2013/06/aa20920-12/aa20920-12.html
  14. 14.0 14.1 doi=10.1051/0004-6361/201219587. Calculated from the luminosity and effective temperature: Square root of '"`UNIQ--postMath-000000AD-QINU`"' is '"`UNIQ--postMath-000000AE-QINU`"', square root of '"`UNIQ--postMath-000000AF-QINU`"' is '"`UNIQ--postMath-000000B0-QINU`"' Notice: It is a common misconception that NML Cygni's diameter is 1,650 times the Sun's diameter, but this number was made up completely by a Wikipedia editor and currently is not scientifically supported and obsolete. See this: "congratulations, your calculated 1650 have left a heavy footprint in the net".
  15. 15.0 15.1 15.2 15.3 15.4 15.5 doi:10.1051/0004-6361/200913771.
  16. bibcode=2005ApJ...622L.137L
  17. https://doi.org/10.1088%2F0004-6256%2F137%2F6%2F4744
  18. doi:10.1086/190559
  19. doi:10.1111/j.1365-2966.2010.16965.x
  20. https://academic.oup.com/mnrasl/article/437/1/L1/1012158
  21. https://doi.org/10.1088%2F0004-637X%2F760%2F1%2F65
  22. 22.0 22.1 22.2 https://doi.org/10.1051%2F0004-6361%2F201013993
  23. https://arxiv.org/abs/1804.00894
  24. 24.00 24.01 24.02 24.03 24.04 24.05 24.06 24.07 24.08 24.09 24.10 24.11 Davies, B.; Figer, D. F.; Law, C. J.; Kudritzki, R. P.; Najarro, F.; Herrero, A.; MacKenty, J. W. (2008). "The Cool Supergiant Population of the Massive Young Star Cluster RSGC1". The Astrophysical Journal 676 (2): 1016–1028. arXiv:0711.4757. Bibcode 2008ApJ...676.1016D. doi:10.1086/527350.
  25. https://web.archive.org/web/20180526220913/https://doi.org/10.1051%2F0004-6361%2F201219126
  26. https://doi.org/10.1086%2F312879
  27. 27.0 27.1 doi=10.1051/0004-6361/201322421
  28. doi=10.1088/0004-637X/703/1/420
  29. Cite error: Invalid <ref> tag; no text was provided for refs named thomas
  30. Gvaramadze, V. V.; Menten, K. M.; Kniazev, A. Y.; Langer, N.; MacKey, J.; Kraus, A.; Meyer, D. M.-A.; Kamiński, T. (2014). "IRC -10414: A bow-shock-producing red supergiant star". Monthly Notices of the Royal Astronomical Society 437: 843. arXiv:1310.2245. Bibcode 2014MNRAS.437..843G. doi:10.1093/mnras/stt1943.
  31. 31.0 31.1 Cite error: Invalid <ref> tag; no text was provided for refs named josselin
  32. Turner, David G.; Rohanizadegan, Mina; Berdnikov, Leonid N.; Pastukhova, Elena N. (2006). "The Long-Term Behavior of the Semiregular M Supergiant Variable BC Cygni". The Publications of the Astronomical Society of the Pacific 118 (849): 1533. Bibcode 2006PASP..118.1533T. doi:10.1086/508905.
  33. Massey, Philip; Levesque, Emily M.; Olsen, K. A. G.; Plez, Bertrand; Skiff, B. A. (2007). "HV 11423: The Coolest Supergiant in the SMC". The Astrophysical Journal 660: 301. arXiv:astro-ph/0701769. Bibcode 2007ApJ...660..301M. doi:10.1086/513182.
  34. Paumard, T; Pfuhl, O; Martins, F; Kervella, P; Ott, T; Pott, J.-U; Le Bouquin, J. B; Breitfelder, J et al. (2014). "GCIRS 7, a pulsating M1 supergiant at the Galactic centre . Physical properties and age". Astronomy & Astrophysics 568: A85. arXiv:1406.5320. Bibcode 2014A&A...568A..85P. doi:10.1051/0004-6361/201423991.
  35. http://iopscience.iop.org/article/10.1088/0004-6256/135/4/1430/meta
  36. Ramstedt, S.; Schöier, F. L.; Olofsson, H. (2009). "Circumstellar molecular line emission from S-type AGB stars: mass-loss rates and SiO abundances". Astronomy and Astrophysics 499 (2): 515–527. arXiv:0903.1672. Bibcode 2009A&A...499..515R. doi:10.1051/0004-6361/200911730.
  37. Ramstedt, S.; Schöier, F. L.; Olofsson, H.; Lundgren, A. A. (2006). "Mass-loss properties of S-stars on the AGB". Astronomy and Astrophysics 454 (2): L103. arXiv:astro-ph/0605664. Bibcode 2006A&A...454L.103R. doi:10.1051/0004-6361:20065285.
  38. Levesque, Emily M.; Massey, P.; Zytkow, A. N.; Morrell, N. (1 September 2014). "Discovery of a Thorne-̇Żytkow object candidate in the Small Magellanic Cloud". Monthly Notices of the Royal Astronomical Society: Letters 443: L94. arXiv:1406.0001. Bibcode 2014MNRAS.443L..94L. doi:10.1093/mnrasl/slu080.
  39. Arroyo-Torres, B.; Wittkowski, M.; Chiavassa, A.; Scholz, M.; Freytag, B.; Marcaide, J. M.; Hauschildt, P. H.; Wood, P. R. et al. (2015). "What causes the large extensions of red supergiant atmospheres?. Comparisons of interferometric observations with 1D hydrostatic, 3D convection, and 1D pulsating model atmospheres". Astronomy & Astrophysics 575: A50. arXiv:1501.01560. Bibcode 2015A&A...575A..50A. doi:10.1051/0004-6361/201425212.
  40. "Antares: Betelgeuse's Neglected Twin" Aavso.org.
  41. https://doi.org/10.1088%2F0004-637X%2F746%2F2%2F154
  42. Gull, T. R.; Damineli, A. (2010). "JD13 – Eta Carinae in the Context of the Most Massive Stars". Proceedings of the International Astronomical Union 5: 373. arXiv:0910.3158. Bibcode 2010HiA....15..373G. doi:10.1017/S1743921310009890.
  43. Smith, Nathan (2011). "Explosions triggered by violent binary-star collisions: Application to Eta Carinae and other eruptive transients". Monthly Notices of the Royal Astronomical Society 415 (3): 2020. arXiv:1010.3770. Bibcode 2011MNRAS.415.2020S. doi:10.1111/j.1365-2966.2011.18607.x.
  44. Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  45. Baron, F.; Monnier, J. D.; Kiss, L. L.; Neilson, H. R.; Zhao, M.; Anderson, M.; Aarnio, A.; Pedretti, E. et al. (2014). "CHARA/MIRC Observations of Two M Supergiants in Perseus OB1: Temperature, Bayesian Modeling, and Compressed Sensing Imaging". The Astrophysical Journal 785: 46. arXiv:1405.4032. Bibcode 2014ApJ...785...46B. doi:10.1088/0004-637X/785/1/46.
  46. Stickland, D. J. (1985). "IRAS observations of the cool galactic hypergiants". The Observatory 105: 229. Bibcode 1985Obs...105..229S.
  47. 47.0 47.1 Bergeat, J.; Chevallier, L. (2005). "The mass loss of C-rich giants". Astronomy and Astrophysics 429: 235. arXiv:astro-ph/0601366. Bibcode 2005A&A...429..235B. doi:10.1051/0004-6361:20041280. pp. 235-246.
  48. Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  49. Achmad, L. (1992). "A photometric study of the G0-4 Ia(+) hypergiant HD 96918 (V382 Carinae)". Astronomy and Astrophysics 259: 600–606. Bibcode 1992A&A...259..600A.
  50. Wasatonic, Richard P.; Guinan, Edward F.; Durbin, Allyn J. (2015). "V-Band, Near-IR, and TiO Photometry of the Semi-Regular Red Supergiant TV Geminorum: Long-Term Quasi-Periodic Changes in Temperature, Radius, and Luminosity". Publications of the Astronomical Society of the Pacific 127 (956): 1010. Bibcode 2015PASP..127.1010W. doi:10.1086/683261.
  51. https://doi.org/10.1086%2F176303
  52. https://doi.org/10.1051%2F0004-6361%3A20078306
  53. https://www.eso.org/public/news/eso1741/
  54. https://doi.org/10.1086%2F505025
  55. https://arxiv.org/abs/1802.06086
  56. http://www.newforestobservatory.com/2012/07/02/the-second-reddest-star-in-the-sky-119-tauri-ce-tauri/
  57. http://iopscience.iop.org/article/10.1088/0004-637X/778/2/109/meta
  58. http://iopscience.iop.org/article/10.1088/2041-8205/734/1/L13/meta
  59. http://iopscience.iop.org/article/10.3847/2041-8213/aa60c8/meta
  60. http://depts.washington.edu/naivpl/sites/default/files/hz.shtml
  61. Gorlova, N.; Lobel, A.; Burgasser, A. J.; Rieke, G. H.; Ilyin, I.; Stauffer, J. R. (2006). "On the CO Near‐Infrared Band and the Line‐splitting Phenomenon in the Yellow Hypergiant ρ Cassiopeiae". The Astrophysical Journal 651 (2): 1130–1150. arXiv:astro-ph/0607158. Bibcode 2006ApJ...651.1130G. doi:10.1086/507590.
  62. http://arxiv.org/ftp/arxiv/papers/1010/1010.4610.pdf
  63. Woodruff, H. C.; Eberhardt, M.; Driebe, T.; Hofmann, K.-H. et al. (2004). "Interferometric observations of the Mira star o Ceti with the VLTI/VINCI instrument in the near-infrared". Astronomy & Astrophysics 421 (2): 703–714. arXiv:astro-ph/0404248. Bibcode 2004A&A...421..703W. doi:10.1051/0004-6361:20035826.
  64. http://adsabs.harvard.edu/abs/2005ESASP.560..651H
  65. Nieuwenhuijzen, H.; De Jager, C.; Kolka, I.; Israelian, G.; Lobel, A.; Zsoldos, E.; Maeder, A.; Meynet, G. (2012). "The hypergiant HR 8752 evolving through the yellow evolutionary void". Astronomy & Astrophysics 546: A105. Bibcode 2012A&A...546A.105N. doi:10.1051/0004-6361/201117166.
  66. https://doi.org/10.1051%2F0004-6361%3A20000451
  67. doi = 10.1051/0004-6361/201116858
  68. bibcode=1995ASPC...83..176L
  69. https://www.britannica.com/place/S-Doradus
  70. Bedding, T. R. et al. (April 1997), "The angular diameter of R Doradus: a nearby Mira-like star", Monthly Notices of the Royal Astronomical Society 286 (4): 957–962, arXiv:astro-ph/9701021, Bibcode 1997MNRAS.286..957B, doi:10.1093/mnras/286.4.957
  71. Dinh-V.-Trung; Muller, Sébastien; Lim, Jeremy; Kwok, Sun; Muthu, C. (2009). "Probing the Mass-Loss History of the Yellow Hypergiant IRC+10420". The Astrophysical Journal 697: 409. arXiv:0903.3714v1. Bibcode 2009ApJ...697..409D. doi:10.1088/0004-637X/697/1/409.
  72. See http://vizier.u-strasbg.fr/viz-bin/VizieR-5?-out.add=.&-source=II/224/cadars&recno=9107 .
  73. Cite error: Invalid <ref> tag; no text was provided for refs named wittkowski092017
  74. bibcode = 2009ApJ...691.1816N
  75. https://doi.org/10.1017%2FS1743921307000622
  76. Moravveji, Ehsan; Guinan, Edward F.; Khosroshahi, Habib; Wasatonic, Rick (2013). "The Age and Mass of the α Herculis Triple-star System from a MESA Grid of Rotating Stars with 1.3 <= M/M ⊙ <= 8.0". The Astronomical Journal 146 (6): 148. arXiv:1308.1632. Bibcode 2013AJ....146..148M. doi:10.1088/0004-6256/146/6/148.
  77. https://doi.org/10.1051%2F0004-6361%2F201117472
  78. http://adsabs.harvard.edu/abs/1972A&AS....7..257W
  79. https://doi.org/10.1051%2F0004-6361%2F201629127
  80. https://doi.org/10.1071%2FAS07017
  81. https://fotw.info/flags/br_astro.html
  82. http://stars.astro.illinois.edu/sow/deneb.html
  83. doi=10.1051/0004-6361:20078590
  84. https://doi.org/10.1086%2F116787
  85. http://adsabs.harvard.edu/abs/2005AcA....55..247M
  86. https://doi.org/10.1111%2Fj.1365-2966.2009.14433.x
  87. doi=10.1088/0004-6256/140/5/1329
  88. http://stars.astro.illinois.edu/sow/enif.html
  89. arxiv=1508.01909
  90. Ask Andy: The Biggest Star
  91. https://doi.org/10.1086%2F192099
  92. http://stars.astro.illinois.edu/sow/gacrux.html
  93. bibcode = 2008A&A...486..971B
  94. https://www.nasa.gov/multimedia/imagegallery/image_feature_1147.html
  95. http://adsabs.harvard.edu/abs/1991A&A...246..490L
  96. https://doi.org/10.1051%2F0004-6361%2F200913771
  97. http://stars.astro.illinois.edu/sow/almach.html
  98. http://iopscience.iop.org/article/10.1088/0004-637X/747/2/108/meta
  99. doi=10.1051/0004-6361/201322894
  100. https://doi.org/10.1086%2F301114
  101. doi=10.1093/mnras/stt1037 Cite error: Invalid <ref> tag; name "vlti" defined multiple times with different content Cite error: Invalid <ref> tag; name "vlti" defined multiple times with different content
  102. http://stars.astro.illinois.edu/sow/polis.html
  103. https://doi.org/10.1086%2F113678
  104. https://doi.org/10.1111%2Fj.1365-2966.2012.21873.x
  105. https://doi.org/10.1051%2F0004-6361%3A20065105
  106. 106.0 106.1 106.2 https://www.aanda.org/articles/aa/pdf/2011/02/aa14442-10.pdf
  107. https://doi.org/10.1051%2F0004-6361%2F201014442
  108. https://doi.org/10.1086%2F422180
  109. https://doi.org/10.1051%2F0004-6361%2F201014442
  110. https://doi.org/10.1086%2F305388
  111. doi=10.1111/j.1365-2966.2010.17167.x
  112. http://earthsky.org/space/how-big-is-the-biggest-monster-star
  113. arxiv = 1109.4425
  114. doi=10.1051/0004-6361/201322696
  115. doi=10.1111/j.1365-2966.2005.08796.x (Notice: for radius and luminosity, see Table 1 with d=2 kpc.)
  116. doi = 10.1051/0004-6361/201321434. Title = Dynamical mass of the O-type supergiant in ζ Orionis A
  117. bibcode=2007MNRAS.377..415N doi=10.1111/j.1365-2966.2007.11608.x
  118. Wright, K. O. (1977). "The system of VV Cephei derived from an analysis of the H-alpha line". Journal of the Royal Astronomical Society of Canada 71: 152. Bibcode 1977JRASC..71..152W.
  119. bibcode=1992A&AS...95..589H
  120. https://www.youtube.com/watch?v=eE5K5FibSxk
  121. http://outreach.atnf.csiro.au/education/senior/astrophysics/photometry_luminosity.html

Cite error: <ref> tag with name "sacuto" defined in <references> is not used in prior text.
Cite error: <ref> tag with name "ohnaka2013" defined in <references> is not used in prior text.
Cite error: <ref> tag with name "eikenberry" defined in <references> is not used in prior text.
Cite error: <ref> tag with name "Pecaut" defined in <references> is not used in prior text.

Cite error: <ref> tag with name "triangulum" defined in <references> is not used in prior text.
<comments />
As a reminder, article comments are only for discussions on how to improve the article. Please direct other comments to a user's talk page. Please be formal and do not use excessive uppercase. Please be advised you may receive an automatic block if you break the article comments policy. For information regarding what is acceptable/not acceptable in article comments, please message Icons-flag-ru.png Joey (talk), Natalia (talk), Icons-flag-fr.png ynoss (talk), or Icons-flag-ca.png Daniel (older account/talk).


Notes[edit]


<comments />

"Day" #1 (lasted 13,820 - 4,404 billion years ago) "Day" #2 (lasted 4,404 - 2,450 billion years ago) "Day" #3 (lasted 2,450 - 1,000 billion years ago) "Day" #4 (lasted 1,000 - 250 billion years ago) "Day" #5 (lasted 250 - 10 billion years ago "Day" #6 (lasted 10 billion years ago to 6,000 years ago)

Daniel "Danny" Wilson[edit]

Hi! My name is Dan and I live in Australia. I was born in Canada, and I am 14 years old. I like astronomy, countryballs, etc.