Stellar Classification
In astronomy, stellar classification is a way of grouping stars by temperature and luminosity. A star is a ball of superheated gas called plasma. Star temperature can be measured by looking at its spectrum, the type of light that the star shines. Stars are also grouped into spectral types or classes by color. In general, a star's temperature determines its color, from red to blue-white. Blue-white stars are the hottest, while Red ones are the coolest. Each class has their own subclass as well, with Hindu-Arabic Numerals. A G0 star would be the hottest type G and G9 with be the coolest type G.
Life Cycle of a Star (Stellar Evolution)[edit]
Stars are born in clouds of gas called a Nebula (plural: Nebulae) Nebulae are pulled together and become Protostars. Clouds of gas orbiting these stars then condense to form Planets, like how the Solar System was formed. The Star is then born and becomes a Main-Sequence Star. These stars live for up to 10 billion years and start to fuse hydrogen into the other elements of the Periodic Table. But as they reach heavier elements like Oxygen, they start cooling in temperature and become Red Giant stars, pushing their outer layers outward. Some stars expand even further into Red Supergiants by fusing metals. If the original post-giant star is more than 7 times larger than the Sun, then it will explode as a supernova for its death. Then it will become either a Neutron Star or a Black Hole, a bottomless pit that nothing can escape. If the original post-giant star is less than 7 times the size of the sun, it will become a white dwarf. White Dwarfs are small stars about the size of Earth, but they are hotter and were once the core of the progenitor star. Neutron Stars are the cores of original stars that have been crushed to the size of a city and they are packed up with Neutrons, the part of the atom that has no electrical charge. One 1 cm x 1 cm x 1 cm cube of their material would weigh as much as 5 fully-loaded cargo ships.
Stellar evolution phase |
Temperature (Kelvin) |
Diameter (D☉, or other when specified) |
---|---|---|
Nebula (P) | ~0 | 1 to 2,000 ly |
Main Sequence Star | 3,000 to 50,000 | 0.08 to 20 |
Red Giant | 3,000 to 5,000 | 20 to 200 |
Red Supergiants | 200 to 2,600 | |
White Dwarf | <4,000[1][2] to 150,000[3] | 8,000 to 100,000 km |
Neutron Star | 600,000[4][5][6][7][8][9] | 5 to 50 km |
Black Hole | 0.00000000000000000001 | Any |
Luminosity Class[edit]
Stars are also organized into another classification, this time for luminosity. This tells if the star is illegible to be called a dwarf, giant, supergiant, or hypergiant. It is also called the Yerkes spectral classification.
Temperature Class[edit]
The stellar classification used to classify stars by color or temperature has seven main classes and four other ones. It is called the Morgan-Keenan stellar classification. It was originally proposed by Italian astronomer Angelo Secchi, but has been improved by
Harvard professors William Morgan and Philip Keenan.
The Harvard Computers were a group of women astronomers best known for their contributions to the modern classes for stars. The most prominent of them were Annie Jump Cannon, who dropped all unnecessary letters from the larger Draper system leaving it as "O, B, A, F, G, K, M", and Williamina Fleming, who classified most of the stars in the Draper system.
Jump Cannon left stellar classes P and Q, which are used for planetary nebulae and novae and pulsars respectively.
It was originally thought that for stellar classes G to M there was a significant difference in dwarfs and giants, in terms of size and temperature, and being beyond distinguishable for earlier stellar classes. However, with the discovery of subdwarf O and B stars, this has proved to apply to classes O and B as well. White dwarfs are the dwarf counterparts of classes A and F in terms of average temperature, though they now belong to an entirely different class (D).
"Late-type" stars refer to classes F, G, K, and M, and the cooler subclasses of any class (such as G5-G9). "Early-type" refers to classes O, B, and A and the hotter subclases of any class. Thus "early" means hotter, and "late" means cooler. These terms were derived from an obsolete model of stellar evolution based on the Kelvin-Helmholtz mechanism, where stars started as red giants, before contracting into blue main-sequence stars and finally into red dwarfs. This model was rendered obsolete by the discovery that stars are powered by nuclear fusion. However, the terms "early" and "late", based on the model's timescale, were carried on, beyond the demise of the theory on which they were based.
Class | Surface temperature[10] (kelvin) |
Conventional color description |
Actual apparent color | Mass(solar masses) | Radius(solar radii) | Luminosity (bolometric) |
Hydrogen lines |
Fraction of all main-sequence stars[11] |
---|---|---|---|---|---|---|---|---|
O | ≥ 33,000 K | blue | blue | ≥ 16 M☉ | ≥ 6.6 R☉ | ≥ 30,000 L☉ | Weak | ~0.00003% |
B | 10,000–33,000 K | blue white | deep blue white | 2.1–16 M☉ | 1.8–6.6 R☉ | 25–30,000 L☉ | Medium | 0.13% |
A | 7,500–10,000 K | white | blue white | 1.4–2.1 M☉ | 1.4–1.8 R☉ | 5–25 L☉ | Strong | 0.6% |
F | 6,000–7,500 K | yellow white | white | 1.04–1.4 M☉ | 1.15–1.4 R☉ | 1.5–5 L☉ | Medium | 3% |
G | 5,200–6,000 K | yellow | yellowish white | 0.8–1.04 M☉ | 0.96–1.15 R☉ | 0.6–1.5 L☉ | Weak | 7.6% |
K | 3,700–5,200 K | orange | pale yellow orange | 0.45–0.8 M☉ | 0.7–0.96 R☉ | 0.08–0.6 L☉ | Very weak | 12.1% |
M | 2,000–3,700 K | red | light orange red | ≤ 0.45 M☉ | ≤ 0.7 R☉ | ≤ 0.08 L☉ | Very weak | 76.45% |
R | 1,300–2,000 K | red[citation needed] | red[citation needed] | Unknown | Unknown | Unknown | Very weak | Unknown |
N | 1,300–2,000 K | red[citation needed] | red[citation needed] | Unknown | Unknown | Unknown | Very weak | Unknown |
S | 1,300–2,000 K | red[citation needed] | red[citation needed] | Unknown | Unknown | Unknown | Very weak | Unknown |
Stellar Class
|
Secchi's original classification[12][13][14][15][16] | Draper Classification Equivalent[17] | Temperature
(in Kelvin) |
Percentage (%) of known stars | Relevant image | |
---|---|---|---|---|---|---|
Early-type | LBV (luminous blue variable) | V
(according to Edward Charles Pickering) |
n/a | 7,500 to 50,000 | 0.000033 | |
O | O | 30,000 to 50,000 (giants) 40,000 to 100,000 (dwarfs) | ||||
B
|
I (Orion subtype), V (Be stars) | B | 10,000 to 30,000 (giants)
20,000 to 40,000 (dwarfs)
|
0.13 | ![]() | |
A | I | A, C, D | 7,500 to 10,000 (giants)
3,000 to 250,000 (dwarfs; see below) |
0.7 | ![]() | |
F | E, F | 6,000 to 7,500 (giants)
3,000 to 250,000 (dwarfs; see below) |
3 | ![]() | ||
G | II | G, H, I | 5,000 to 6,000 (giants)
5,700 to 6,400 (dwarfs) |
7 | ![]() | |
K | K, L | 4,000 to 5,000 (giants)
4,800 to 5,500 (dwarfs) |
12.1 | ![]() | ||
Late-type | M | III | M | 2,000 to 4,000 (giants)
3,400 to 4,000 (dwarfs) |
77 | |
R
|
IV | N | 3,000 to 5,000 | unknown | ![]() | |
N
|
4,000 to 2,000 | ![]() | ||||
S
|
![]() | |||||
![]() Objects included are the Sun, the red and brown dwarf companions of Gliese 229, Teide 1 and Jupiter.
|
n/a | n/a | 200 to 3,000 | > 100 | ||
Early-type | Wolf-Rayet Stars | V (according to Edward Charles Pickering) | O
(later separated from O-type stars) |
30,000 to 200,000 | unknown | ![]() |
D | A, D? | 3,000 to 250,000 | common | ![]() | ||
P
|
P | unknown | ||||
? | Q
|
n/a | Q | ![]() |
Hertzsprung-Russell Diagram[edit]
Star types are arranged in the Hertzsprung-Russell Diagram. This scattergraph was invented by Danish and
American astronomers Ejnar Hertzsprung and Henry Russell in 1908. Stars farther away on the right are cooler in temperature, while stars that are near the top are more luminous and bright.
The line going from the top left-hand side down to the bottom right-hand side contains all of the main-sequence stars. The giant branch, containing yellow, orange, red giants, supergiants, hypergiants, and Mira variables, is located just above and right of the main sequence stars. Blue and white supergiants are directly above the central main sequence. Brown dwarfs are at the very bottom of the main sequence, with white dwarfs directly below the central main-sequence. The yellow evolutionary void is located between the blue-white supergiants and the giant branch.
B-V Color Index[edit]
In astronomy, the B-V color index is a numerical expression that determines the exact appearant "color" of a certain star in the night sky. The smaller the color index, the more the star appears blue. For comparison, our white (not yellow) Sun has an approximate B-V color index of 0.656[18], while Rigel has a color index of -0.03.[19] Red Giants have color indexes from 0.81 to 1.4 .[20]
References[edit]
- http://adsabs.harvard.edu/abs/1981A&AS...46..193H
- http://adsabs.harvard.edu/abs/2001JRASC..95...32L
- http://adsabs.harvard.edu/abs/1994ASPC...60....3G
- https://www.aanda.org/articles/aa/abs/2008/37/aa09936-08/aa09936-08.html
- http://adsabs.harvard.edu/abs/2000A&A...353..163N
- http://www.annualreviews.org/doi/10.1146/annurev.astro.45.051806.110615
- https://www.cfa.harvard.edu/~pberlind/atlas/htmls/note.html
- ↑ http://adsabs.harvard.edu/abs/1997ApJ...489L.157H
- ↑ ISBN 0-333-75088-8
- ↑ http://adsabs.harvard.edu/abs/1999ApJS..121....1M
- ↑ http://www3.mpifr-bonn.mpg.de/staff/pfreire/NS_masses.html
- ↑ ISBN 1-61233-765-1
- ↑ http://imagine.gsfc.nasa.gov/docs/ask_astro/answers/010607a.html
- ↑ ISBN 0-387-33543-9
- ↑ https://heasarc.gsfc.nasa.gov/docs/xte/learning_center/ASM/ns.html
- ↑ A neutron star's density increases as its mass increases, and its radius decreases non-linearly. (archived image: https://web.archive.org/web/20111017230141/http://ixo.gsfc.nasa.gov/old_conx_pages/science/neutron_star/index.html) A newer page is here: https://heasarc.gsfc.nasa.gov/docs/xte/Greatest_Hits/khz.qpo.html (specifically the image https://heasarc.gsfc.nasa.gov/docs/xte/Greatest_Hits/cole.miller.plot.2.ps.gif)
- ↑ Tables VII, VIII, Empirical bolometric corrections for the main-sequence, G.M.H.J. Habets and J.R.W. Heinze, Astronomy and Astrophysics Supplement Series 46 (November 1981), pp. 193–237, [1]. Luminosities are derived from Mbol figures, using Mbol(☉)=4.75.
- ↑ LeDrew G. 2001. The real starry sky. Journal of the Royal Astronomical Society of Canada. 95, 1, 32–33. [2] Note: Table 2 has an error and so this article will use 824 as the assumed correct total of main-sequence stars.
- ↑ ISBN 0-521-25548-1
- ↑ http://gallica.bnf.fr/ark:/12148/bpt6k30204/f623.table
- ↑ http://gallica.bnf.fr/ark:/12148/bpt6k30204/f364.table
- ↑ pp. 62–63, Hearnshaw 1986.
- ↑ p. 60, Hearnshaw 1986.
- ↑ http://adsabs.harvard.edu/abs/1890AnHar..27....1P, also see pp. 106–108, Hearnshaw 1986.
- ↑ http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1992PASP..104.1035G&db_key=AST&data_type=HTML&format=&high=44b52c369023103
- ↑ http://simbad.u-strasbg.fr/sim-id.pl?protocol=html&Ident=Rigel&NbIdent=1&Radius=10&Radius.unit=arcmin&CooFrame=FK5&CooEpoch=2000&CooEqui=2000&output.max=all&o.catall=on&output.mesdisp=N&Bibyear1=1983&Bibyear2=2006&Frame1=FK5&Frame2=FK4&Frame3=G&Equi1=2000.0&Equi2=1950.0&Equi3=2000.0&Epoch1=2000.0&Epoch2=1950.0&Epoch3=2000.0
- ↑ ISBN 0-521-34787-4
<comments/>