Quasi-star

From the Science Archives, the open-project database of science information
Jump to navigation Jump to search

Template:Confused A quasi-star (also called black hole star) is a hypothetical type of extremely massive star that may have existed very early in the history of the Universe. Unlike modern stars, which are powered by nuclear fusion in their cores, a quasi-star's energy would come from material falling into a central black hole.[1]

Size comparison of a quasi-star compared to several known giant stars, including also the largest known stars.

A quasi-star is predicted to have formed when the core of a large protostar collapses into a black hole during its formation and the outer layers of the star are massive enough to absorb the resulting burst of energy without being blown away (as they are with modern supernovae). Such a star would have to be at least 1,000 solar masses (2.0×1033 kg).[1] These stars may have also been formed by dark matter halos drawing in enormous amounts of gas via gravity, in the early universe, which can produce supermassive stars with tens of thousands of solar masses.[2][3] Stars this large could only form early in the history of the Universe before the hydrogen and helium were contaminated by heavier elements; thus, they may have been very massive Population III stars.

Once the black hole had formed at the core of the protostar, it would continue generating a large amount of radiant energy from the infall of additional stellar material. This energy would counteract the force of the gravity, creating an equilibrium similar to the one that supports modern fusion-based stars.[4] A quasi-star is predicted to have had a maximum lifespan of about 7 million years,[5] after which the core black hole would have grown to about 1,000–10,000 solar masses (2×1033–2×1034 kg).[1][4] These intermediate-mass black holes have been suggested as the origin of the modern era's supermassive black holes. Quasi-stars are predicted to have surface temperatures limited to about 4,000 K (3,730 °C),[4] but, with diameters of approximately 10 billion kilometres (66.85 au) or 7,187 times that of the Sun, each one would produce as much light as a small galaxy.[1]

See also[edit]

References[edit]

  1. 1.0 1.1 1.2 1.3 Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  2. Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  3. Lua error in Module:Citation/CS1 at line 379: attempt to call method 'match' (a nil value).
  4. 4.0 4.1 4.2 Begelman, Mitch; Rossi, Elena; Armitage, Philip (2008). "Quasi-stars: accreting black holes inside massive envelopes". MNRAS 387 (4): 1649–1659. arXiv:0711.4078. Bibcode 2008MNRAS.387.1649B. doi:10.1111/j.1365-2966.2008.13344.x.
  5. Schleicher, Dominik R. G.; Palla, Francesco; Ferrara, Andrea; Galli, Daniele; Latif, Muhammad (25 May 2013). "Massive black hole factories: Supermassive and quasi-star formation in primordial halos". Astronomy & Astrophysics 558: A59. arXiv:1305.5923. Bibcode 2013A&A...558A..59S. doi:10.1051/0004-6361/201321949.


Add your comment
The Science Archives welcomes all comments. If you do not want to be anonymous, register or log in. It is free.


As a reminder, article comments are only for discussions on how to improve the article. Please direct other comments to a user's talk page. Please be formal and do not use excessive uppercase. Please be advised you may receive an automatic block if you break the article comments policy. For information regarding what is acceptable/not acceptable in article comments, please message Icons-flag-ru.png Joey (talk), Natalia (talk), Icons-flag-fr.png ynoss (talk), or Icons-flag-ca.png Daniel (older account/talk).


{{{1}}}
Observation data
Epoch {{{epoch}}}      Equinox
Constellation {{{3}}}
{{{component1}}}
Right ascension {{{ra1}}}
Declination {{{dec1}}}
Apparent magnitude (V) {{{appmag_v1}}}
{{{component2}}}
Right ascension {{{ra2}}}
Declination {{{dec2}}}
Apparent magnitude (V) {{{appmag_v2}}}
Characteristics
Evolutionary stage {{{9}}}
Spectral type {{{7}}}
Astrometry
Distance{{{4}}} ly
Details
Radius{{{5}}} R
Diameter{{{5}}} D
Luminosity (bolometric){{{11}}} L
Temperature{{{8}}} K
Other designations
{{{1}}}, {{{2}}}
{{{1}}}, also known as {{{2}}}, is a star located in the constellation {{{3}}}. It is located {{{4}}} light years away from the Earth. {{{1}}} has a diameter of {{{5}}} D, making it around the size of the orbit of {{{6}}}. {{{1}}} has a stellar class of {{{7}}} and a temperature of {{{8}}} degrees Kelvin; it is a {{{9}}} that is currently burning {{{10}}} within its core. {{{1}}} is around {{{11}}} times brighter than the Sun. {{{12}}}{{{13}}}

References[edit]

<comments />
As a reminder, article comments are only for discussions on how to improve the article. Please direct other comments to a user's talk page. Please be formal and do not use excessive uppercase. Please be advised you may receive an automatic block if you break the article comments policy. For information regarding what is acceptable/not acceptable in article comments, please message Icons-flag-ru.png Joey (talk), Natalia (talk), Icons-flag-fr.png ynoss (talk), or Icons-flag-ca.png Daniel (older account/talk).