Iron star

From the Science Archives, the open-project database of science information that barely anyone can edit
Jump to navigation Jump to search

In astronomy, an iron star is a hypothetical type of compact star that could occur in the universe in the extremely far future, after perhaps 101500 years.

The premise behind iron stars states that cold fusion occurring via quantum tunnelling would cause the light nuclei in ordinary matter to fuse into iron-56 nuclei. Fission and alpha-particle emission would then make heavy nuclei decay into iron, converting stellar-mass objects to cold spheres of iron.[1] The formation of these stars is only a possibility if protons do not decay. Though the surface of a neutron star may be iron, according to some predictions, it is distinct from an iron star.

Unrelatedly, the term is also used for blue supergiants which have a forest of forbidden FeII lines in their spectra. They are potentially quiescent hot luminous blue variables. Eta Carinae has been described as a prototypical example.[2][3]

In popular culture

See also


  1. Dyson, Freeman J. (1979). "Time without end: Physics and biology in an open universe". Reviews of Modern Physics 51 (3): 447–460. Bibcode 1979RvMP...51..447D. doi:10.1103/RevModPhys.51.447.
  2. Walborn, Nolan R.; Fitzpatrick, Edward L. (2000). "The OB Zoo: A Digital Atlas of Peculiar Spectra". The Publications of the Astronomical Society of the Pacific 112 (767): 50. Bibcode 2000PASP..112...50W. doi:10.1086/316490.
  3. Clark, J. S.; Castro, N.; Garcia, M.; Herrero, A.; Najarro, F.; Negueruela, I.; Ritchie, B. W.; Smith, K. T. (2012). "On the nature of candidate luminous blue variables in M 33". Astronomy & Astrophysics 541: A146. arXiv:1202.4409. Bibcode 2012A&A...541A.146C. doi:10.1051/0004-6361/201118440.

Observation data
Epoch {{{epoch}}}      Equinox
Constellation {{{3}}}
Right ascension {{{ra1}}}
Declination {{{dec1}}}
Apparent magnitude (V) {{{appmag_v1}}}
Right ascension {{{ra2}}}
Declination {{{dec2}}}
Apparent magnitude (V) {{{appmag_v2}}}
Evolutionary stage {{{9}}}
Spectral type {{{7}}}
Distance{{{4}}} ly
Radius{{{5}}} R
Diameter{{{5}}} D
Luminosity (bolometric){{{11}}} L
Temperature{{{8}}} K
Other designations
{{{1}}}, {{{2}}}

{{{1}}}, also known as {{{2}}}, is a star located in the constellation {{{3}}}. It is located {{{4}}} light years away from the Earth. {{{1}}} has a diameter of {{{5}}} D, making it around the size of the orbit of {{{6}}}. {{{1}}} has a stellar class of {{{7}}} and a temperature of {{{8}}} degrees Kelvin; it is a {{{9}}} that is currently burning {{{10}}} within its core. {{{1}}} is around {{{11}}} times brighter than the Sun. {{{12}}}{{{13}}}